去模糊
正规化(语言学)
图像复原
算法
降噪
计算机科学
有界函数
反问题
超分辨率
迭代重建
数学优化
数学
图像(数学)
人工智能
图像处理
数学分析
作者
Liangtian He,Qinghua Zhang,Xuesong Yang,Yilun Wang,Chao Wang
出处
期刊:IEEE Signal Processing Letters
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:30: 578-582
被引量:3
标识
DOI:10.1109/lsp.2023.3265174
摘要
Regularization by denoising (RED) framework has shown impressive performance for many imaging inverse problems, by leveraging the denoising method in defining an explicit regularization. In this letter, we propose a novel SLN-RED scheme for image restoration by exploiting the local and nonlocal denoisers simultaneously. Theoretically, we proves that for bounded denoisers, the SLN-RED under ADMM scheme with a continuation strategy converges to a fixed-point. Numerical experiments on deblurring and super-resolution tasks demonstrate promising performance of the proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI