材料科学
分解水
化学工程
催化作用
氧气
化学
有机化学
光催化
工程类
作者
Guang‐Lan Li,Xiang‐Yue Qiao,Yingying Miao,Tianyu Wang,Fei Deng
出处
期刊:Small
[Wiley]
日期:2023-04-07
卷期号:19 (28)
被引量:39
标识
DOI:10.1002/smll.202207196
摘要
The exploring of economical, high-efficiency, and stable bifunctional catalysts for hydrogen evolution and oxygen evolution reactions (HER/OER) is highly imperative for the development of electrolytic water. Herein, a 3D cross-linked carbon nanotube supported oxygen vacancy (Vo )-rich N-NiMoO4 /Ni heterostructure bifunctional water splitting catalyst (N-NiMoO4 /Ni/CNTs) is synthesized by hydrothermal-H2 calcination method. Physical characterization confirms that Vo -rich N-NiMoO4 /Ni nanoparticles with an average size of ≈19 nm are secondary aggregated on CNTs that form a hierarchical porous structure. The formation of Ni and NiMoO4 heterojunctions modify the electronic structure of N-NiMoO4 /Ni/CNTs. Benefiting from these properties, N-NiMoO4 /Ni/CNTs drives an impressive HER overpotential of only 46 mV and OER overpotential of 330 mV at 10 mA cm-2 , which also shows exceptional cycling stability, respectively. Furthermore, the as-assembled N-NiMoO4 /Ni/CNTs||N-NiMoO4 /Ni/CNTs electrolyzer reaches a cell voltage of 1.64 V at 10 mA cm-2 in alkaline solution. Operando Raman analysis reveals that surface reconstruction is essential for the improved catalytic activity. Density functional theory (DFT) calculations further demonstrate that the enhanced HER/OER performance should be attributed to the synergistic effect of Vo and heteostructure that improve the conductivity of N-NiMoO4 /Ni/CNTs and facilitatethe desorption of reaction intermediates.
科研通智能强力驱动
Strongly Powered by AbleSci AI