辐射冷却
发射率
材料科学
光电子学
红外线的
辐射传输
摩尔吸收率
核工程
环境科学
光学
气象学
物理
工程类
作者
Mengke Shi,Zifan Song,Jiahao Ni,Xingyuan Du,Yanxia Cao,Yanyu Yang,Wanjie Wang,Jianfeng Wang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-01-13
卷期号:17 (3): 2029-2038
被引量:103
标识
DOI:10.1021/acsnano.2c07293
摘要
Passive radiative cooling (PRC) and passive radiative heating (PRH) have drawn increasing attention as green and sustainable cooling and heating approaches, respectively. Existing material designs for PRC/PRH are usually static and unsuitable for dynamic seasonal and weather changes. Herein, we demonstrate an all-day dual-mode film fabricated by decorating MXene nanosheets on porous poly(vinylidene fluoride) with abundant coral-like hierarchical structures obtained via phase inversion. The cooling side of the dual-mode film exhibits high solar reflectivity (96.7%) and high infrared emissivity (96.1%). Consequently, daytime subambient radiative cooling of 9.8 °C is achieved with a theoretical cooling power of 107.5 W/m2 and nighttime subambient cooling of 11.7 °C is achieved with a theoretical cooling power of 140.7 W/m2. Meanwhile, the heating side of the dual-mode film exhibits low infrared emissivity (11.6%) and high solar absorptivity (75.7%), contributing to a PRH capability of 8.1 °C, and excellent active solar and Joule heating as effective compensation for PRH. The dual-mode film could be easily switched between cooling and heating modes by flipping it to adapt to dynamic cooling and heating scenarios, which is important for alleviating the energy crisis and reducing greenhouse emissions.
科研通智能强力驱动
Strongly Powered by AbleSci AI