Development of the best retrieval models of non-optically active parameters for an artificial shallow lake by random forest algorithm

随机森林 遥感 环境科学 卫星 水质 均方误差 算法 富营养化 计算机科学 数学 统计 人工智能 生态学 地理 工程类 营养物 生物 航空航天工程
作者
Behnaz Karimi,Seyed Hossein Hashemi,Hossein Aghighi
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:29: 100926-100926
标识
DOI:10.1016/j.rsase.2023.100926
摘要

This research was carried out to acquire the optimized retrieval algorithm by the random forest method and based on remote sensing data to monitor total nitrogen and phosphorus parameters as key drivers for eutrophication in water bodies. For this purpose, the water quality monitoring data of Chitgar Lake in Tehran were used, which is an artificial shallow lake with recreational and urban scenery usage. The Landsat 8 OLI/TIRS and Sentinel 2 MSI satellite images were extracted after matching the date of field observation data and satellite images from 2014 to 2021. Data were divided into calibration and validation datasets. After performing pre-processing processes on satellite images, important bands were recognized using the random forest method. After that, appropriate band compositions and algorithms were selected and regression models were fitted and validated. The optimum model based on Sentinel-2 data was able to estimate total nitrogen concentration with Adj.R2 = 0.82, RMSE = 0.24 mg. L−1 and NRMSE = 15% as well as total phosphorus concentration with Adj.R2 = 0.6, RMSE = 0.012 mg. L−1 and NRMSE = 9% accompanied by the power of 80% in the study area. Consequently, the optimal retrieving algorithm was chosen in the synergy of satellite data and the random forest. Moreover, the predictive model has a promising capability to estimate the concentration of the objective parameters in Chitgar Lake with acceptable accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庞呵呵完成签到,获得积分20
刚刚
充电宝应助AnnaTian采纳,获得10
1秒前
2秒前
wxx完成签到,获得积分10
3秒前
共享精神应助J.采纳,获得10
5秒前
我是老大应助掌心化雪采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
8秒前
岂识浊醪妙理应助fsaf采纳,获得10
8秒前
李健的小迷弟应助jx采纳,获得10
8秒前
111发布了新的文献求助10
10秒前
科研通AI2S应助lgh采纳,获得10
10秒前
yangcj完成签到,获得积分10
12秒前
今后应助半颗橙子采纳,获得10
13秒前
acuis发布了新的文献求助10
13秒前
陈洋_复旦大学完成签到,获得积分10
13秒前
汉堡包应助BJYX采纳,获得10
14秒前
ding应助yyauthor采纳,获得10
15秒前
掌心化雪完成签到,获得积分10
17秒前
fsaf完成签到,获得积分10
18秒前
quxiaofei完成签到,获得积分10
19秒前
顾矜应助依诺采纳,获得10
20秒前
111完成签到,获得积分10
20秒前
缓慢寒梦完成签到 ,获得积分20
21秒前
CMD完成签到 ,获得积分10
21秒前
wanci应助微弱de胖头采纳,获得10
22秒前
22秒前
Darlin发布了新的文献求助10
23秒前
24秒前
25秒前
跺跺脚完成签到,获得积分10
25秒前
25秒前
BJYX完成签到,获得积分10
25秒前
可靠从云完成签到 ,获得积分10
26秒前
在水一方应助玥玥采纳,获得10
26秒前
lelelelelelele完成签到,获得积分10
27秒前
嗯哼举报kiki求助涉嫌违规
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919