清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

OPTRAM-ET: A novel approach to remote sensing of actual evapotranspiration applied to Sentinel-2 and Landsat-8 observations

遥感 蒸散量 环境科学 涡度相关法 卫星 气象学 地理 生态学 生物 生态系统 工程类 航空航天工程
作者
Ali Mokhtari,Morteza Sadeghi,Yasamin Afrasiabian,Kang Yu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:286: 113443-113443 被引量:17
标识
DOI:10.1016/j.rse.2022.113443
摘要

Satellite remote sensing technology provides a promising means for near real-time monitoring of crop water status and requirements in agricultural and hydrological applications. Estimation of actual evapotranspiration (ETa) often requires thermal information; however, not every satellite is equipped with a thermal sensor, which limits the estimation of ETa. To address this limitation, here we propose a satellite-based ETa estimation model, OPTRAM-ET, based on the optical trapezoid model (OPTRAM) estimates of soil moisture and a vegetation index (VI). We applied the OPTRAM-ET model to Sentinel-2 and Landsat-8 satellite data and evaluated the model for ETa estimates using 16 eddy covariance flux towers in the United States and Germany with different landcover types, including agriculture, orchard, permanent wetland, and foothill forests. Next, OPTRAM-ET was compared with the conventional land surface temperature (LST)-VI model. The proposed OPTRAM-ET model showed promising performance over all the studied landcover types. In addition, OPTRAM-ET showed comparable performance to the conventional LST-VI model. However, since the OPTRAM-ET model does not need thermal data, it benefits from higher spatial and temporal resolution data provided by ever-increasing drone- and satellite-based optical sensors to predict crop water status and demand. Unlike the LST-VI model, which needs to be calibrated for each satellite image, a temporally-invariant region-specific calibration is possible in the OPTRAM-ET model. Therefore, OPTRAM-ET is substantially less computationally demanding than the LST-VI model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
44秒前
烟花应助罗大壮采纳,获得10
53秒前
1分钟前
罗大壮发布了新的文献求助10
1分钟前
Jack80发布了新的文献求助20
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
1分钟前
12345完成签到,获得积分20
2分钟前
3分钟前
Ming应助彩色凡英采纳,获得30
3分钟前
平淡冷发布了新的文献求助10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
3分钟前
善学以致用应助小小K采纳,获得10
3分钟前
孙晓燕完成签到 ,获得积分10
3分钟前
4分钟前
spy完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755589
求助须知:如何正确求助?哪些是违规求助? 5496682
关于积分的说明 15381332
捐赠科研通 4893570
什么是DOI,文献DOI怎么找? 2632234
邀请新用户注册赠送积分活动 1580103
关于科研通互助平台的介绍 1535960