遥感
蒸散量
环境科学
涡度相关法
卫星
气象学
地理
生态学
生态系统
工程类
生物
航空航天工程
作者
Ali Mokhtari,Morteza Sadeghi,Yasamin Afrasiabian,Kang Yu
标识
DOI:10.1016/j.rse.2022.113443
摘要
Satellite remote sensing technology provides a promising means for near real-time monitoring of crop water status and requirements in agricultural and hydrological applications. Estimation of actual evapotranspiration (ETa) often requires thermal information; however, not every satellite is equipped with a thermal sensor, which limits the estimation of ETa. To address this limitation, here we propose a satellite-based ETa estimation model, OPTRAM-ET, based on the optical trapezoid model (OPTRAM) estimates of soil moisture and a vegetation index (VI). We applied the OPTRAM-ET model to Sentinel-2 and Landsat-8 satellite data and evaluated the model for ETa estimates using 16 eddy covariance flux towers in the United States and Germany with different landcover types, including agriculture, orchard, permanent wetland, and foothill forests. Next, OPTRAM-ET was compared with the conventional land surface temperature (LST)-VI model. The proposed OPTRAM-ET model showed promising performance over all the studied landcover types. In addition, OPTRAM-ET showed comparable performance to the conventional LST-VI model. However, since the OPTRAM-ET model does not need thermal data, it benefits from higher spatial and temporal resolution data provided by ever-increasing drone- and satellite-based optical sensors to predict crop water status and demand. Unlike the LST-VI model, which needs to be calibrated for each satellite image, a temporally-invariant region-specific calibration is possible in the OPTRAM-ET model. Therefore, OPTRAM-ET is substantially less computationally demanding than the LST-VI model.
科研通智能强力驱动
Strongly Powered by AbleSci AI