Ultrasonic Traveling Waves for Near-Wall Positioning of Single Microbubbles in a Flowing Channel

微气泡 气泡 声学 声辐射力 超声波传感器 材料科学 声穿孔 声压 超声波 声流 声波 空化 机械 生物医学工程 物理 工程类
作者
Yeo Cheon Kim,Pujith R. S. Vijayaratnam,Philippe Blanloeuil,Robert A. Taylor,Tracie Barber
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:49 (4): 961-969 被引量:1
标识
DOI:10.1016/j.ultrasmedbio.2022.11.018
摘要

Although microbubbles are used primarily in the medical industry as ultrasonic contrast agents, they can also be manipulated by acoustic waves for targeted drug delivery, sonothrombolysis and sonoporation. Acoustic waves can also potentially remove microbubbles from tubing systems (e.g., in hemodialysis) to prevent the negative effects associated with circulating microbubbles. A deeper understanding of the interactions between the acoustic radiation force, the microbubble and the channel wall could greatly benefit these applications. In this study, single air-filled microbubbles were injected into a flowing (polydimethylsiloxane) channel and monitored by a high-speed camera while passing through a pulsed ultrasonic wave zone (0.5 MHz). This study compared various bubble sizes, flow rates and acoustic pressure amplitudes to better understand the three physical regimes observed: free bubble translation (away from the wall); on-wall translation; and bubble–wall attachment. Comparison with a theoretical model revealed that the acoustic radiation force needs to exceed the combined repulsive forces (shear lift, wall lubrication and repulsive Van der Waal forces) for the dead state of bubble–wall attachment. The bubble dynamics revealed through this investigation provide an opportunity for efficient positioning of microbubbles in a channel flow, for either in vivo manipulation or removal in biological applications. Although microbubbles are used primarily in the medical industry as ultrasonic contrast agents, they can also be manipulated by acoustic waves for targeted drug delivery, sonothrombolysis and sonoporation. Acoustic waves can also potentially remove microbubbles from tubing systems (e.g., in hemodialysis) to prevent the negative effects associated with circulating microbubbles. A deeper understanding of the interactions between the acoustic radiation force, the microbubble and the channel wall could greatly benefit these applications. In this study, single air-filled microbubbles were injected into a flowing (polydimethylsiloxane) channel and monitored by a high-speed camera while passing through a pulsed ultrasonic wave zone (0.5 MHz). This study compared various bubble sizes, flow rates and acoustic pressure amplitudes to better understand the three physical regimes observed: free bubble translation (away from the wall); on-wall translation; and bubble–wall attachment. Comparison with a theoretical model revealed that the acoustic radiation force needs to exceed the combined repulsive forces (shear lift, wall lubrication and repulsive Van der Waal forces) for the dead state of bubble–wall attachment. The bubble dynamics revealed through this investigation provide an opportunity for efficient positioning of microbubbles in a channel flow, for either in vivo manipulation or removal in biological applications. Corrigendum to 'Ultrasonic Traveling Waves for Near-Wall Positioning of Single Microbubbles in a Flowing Channel' [Ultrasound in Med & Biol. 49 (2023) 961-969]Ultrasound in Medicine and BiologyVol. 49Issue 6PreviewThe authors regret that an error was present in the legend to Figure 2. The final sentence should read as follows: Full-Text PDF

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琉璃完成签到,获得积分10
刚刚
dawn完成签到,获得积分10
刚刚
邱天发布了新的文献求助30
刚刚
领导范儿应助田泽和采纳,获得10
刚刚
1秒前
1秒前
1秒前
2秒前
睡觉啦完成签到,获得积分10
2秒前
chenhouhan发布了新的文献求助10
2秒前
yunfulu29完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
zmm完成签到 ,获得积分10
3秒前
qaplay完成签到 ,获得积分0
3秒前
3秒前
3秒前
4秒前
yycc完成签到,获得积分10
4秒前
乐乐应助yolanda采纳,获得30
5秒前
hualin发布了新的文献求助10
6秒前
6秒前
yznfly应助沉默的婴采纳,获得20
6秒前
共享精神应助liwenhao采纳,获得10
7秒前
8秒前
充电宝应助111采纳,获得10
8秒前
在水一方应助哈哈采纳,获得10
8秒前
血橙完成签到,获得积分10
8秒前
科目三应助DXiao采纳,获得10
8秒前
小飞棍完成签到,获得积分10
8秒前
俊逸的访波完成签到,获得积分10
9秒前
相由心生完成签到,获得积分10
9秒前
小语丝发布了新的文献求助10
9秒前
李雨完成签到,获得积分10
9秒前
Werido完成签到 ,获得积分10
10秒前
10秒前
郭嘉仪发布了新的文献求助10
11秒前
小北发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
无花果应助偷喝气泡水采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188