An integrated strategy of spectrum–effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba

芍药苷 根(腹足类) 近红外光谱 化学 红外光谱学 光谱学 校准 传统医学 生物系统 模式识别(心理学) 人工智能 色谱法 统计 数学 高效液相色谱法 计算机科学 植物 物理 有机化学 医学 生物 量子力学
作者
Qi Wang,Huaqiang Li,Jinling You,Binjun Yan,Weifeng Jin,Menglan Shen,Yunjie Sheng,Bingqian He,Xinrui Wang,Xiongyu Meng,Luping Qin
出处
期刊:Analytical Sciences [Japan Society for Analytical Chemistry]
卷期号:39 (8): 1233-1247 被引量:6
标识
DOI:10.1007/s44211-023-00334-4
摘要

The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum–effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum–effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋识完成签到,获得积分10
刚刚
喔喔佳佳发布了新的文献求助10
1秒前
future发布了新的文献求助10
1秒前
领导范儿应助诚心的源智采纳,获得10
1秒前
yuyijk发布了新的文献求助10
2秒前
隐形曼青应助幸福芝麻采纳,获得10
2秒前
快乐花生发布了新的文献求助10
2秒前
果冻橙发布了新的文献求助20
2秒前
追忆淮发布了新的文献求助10
3秒前
我是老大应助彩云追月采纳,获得10
3秒前
费隐发布了新的文献求助10
3秒前
4秒前
密斯特蟹完成签到,获得积分10
4秒前
4秒前
5秒前
小瞬完成签到,获得积分10
6秒前
慕子完成签到 ,获得积分10
6秒前
7秒前
崔崔崔完成签到,获得积分10
7秒前
小爱完成签到 ,获得积分10
9秒前
9秒前
SOBER完成签到,获得积分10
9秒前
汪宇发布了新的文献求助10
10秒前
虚荣的泥猴桃完成签到 ,获得积分10
10秒前
马dong发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
10秒前
崔崔崔发布了新的文献求助10
11秒前
龚仕杰完成签到 ,获得积分10
11秒前
12秒前
13秒前
的方法完成签到,获得积分10
13秒前
诚心的源智完成签到,获得积分10
13秒前
喔喔佳佳完成签到 ,获得积分10
14秒前
Ehrmantraut完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
思源应助小学生采纳,获得10
15秒前
脑洞疼应助慈祥的雅寒采纳,获得20
16秒前
深情安青应助liffchao采纳,获得10
16秒前
qq发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369