亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An integrated strategy of spectrum–effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba

芍药苷 根(腹足类) 近红外光谱 化学 红外光谱学 光谱学 校准 传统医学 生物系统 模式识别(心理学) 人工智能 色谱法 统计 数学 高效液相色谱法 计算机科学 植物 物理 有机化学 医学 生物 量子力学
作者
Qi Wang,Huaqiang Li,Jinling You,Binjun Yan,Weifeng Jin,Menglan Shen,Yunjie Sheng,Bingqian He,Xinrui Wang,Xiongyu Meng,Luping Qin
出处
期刊:Analytical Sciences [Japan Society for Analytical Chemistry]
卷期号:39 (8): 1233-1247 被引量:6
标识
DOI:10.1007/s44211-023-00334-4
摘要

The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum–effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum–effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周亚平完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
思源应助勤奋的琳采纳,获得10
2秒前
4秒前
黄黄发布了新的文献求助20
6秒前
10秒前
等待完成签到,获得积分10
12秒前
Anony发布了新的文献求助10
13秒前
勤奋的琳完成签到,获得积分20
13秒前
keyanzhang完成签到 ,获得积分10
13秒前
14秒前
勤奋的琳发布了新的文献求助10
15秒前
18秒前
浮浮世世发布了新的文献求助10
19秒前
argwew完成签到,获得积分10
29秒前
顾良完成签到 ,获得积分10
29秒前
站岗小狗完成签到 ,获得积分10
29秒前
32秒前
Anony发布了新的文献求助10
32秒前
34秒前
34秒前
Yuanyuan发布了新的文献求助10
34秒前
zyx发布了新的文献求助30
36秒前
yxf发布了新的文献求助10
39秒前
39秒前
童童完成签到,获得积分20
40秒前
Ge完成签到,获得积分10
41秒前
ANG完成签到 ,获得积分10
45秒前
Anony完成签到,获得积分10
46秒前
YifanWang应助Ge采纳,获得30
47秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509270
求助须知:如何正确求助?哪些是违规求助? 4604243
关于积分的说明 14489522
捐赠科研通 4538962
什么是DOI,文献DOI怎么找? 2487229
邀请新用户注册赠送积分活动 1469654
关于科研通互助平台的介绍 1441902