An integrated strategy of spectrum–effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba

芍药苷 根(腹足类) 近红外光谱 化学 红外光谱学 光谱学 校准 传统医学 生物系统 模式识别(心理学) 人工智能 色谱法 统计 数学 高效液相色谱法 计算机科学 植物 物理 有机化学 医学 生物 量子力学
作者
Qi Wang,Huaqiang Li,Jinling You,Binjun Yan,Weifeng Jin,Menglan Shen,Yunjie Sheng,Bingqian He,Xinrui Wang,Xiongyu Meng,Luping Qin
出处
期刊:Analytical Sciences [Japan Society for Analytical Chemistry]
卷期号:39 (8): 1233-1247 被引量:6
标识
DOI:10.1007/s44211-023-00334-4
摘要

The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum–effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum–effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
刚刚
Singularity应助蚊香液采纳,获得10
刚刚
1秒前
直率起眸完成签到,获得积分10
1秒前
1秒前
京昭发布了新的文献求助10
1秒前
1秒前
Lv发布了新的文献求助10
1秒前
阿容完成签到,获得积分10
1秒前
木炭完成签到,获得积分10
1秒前
搜集达人应助badada采纳,获得10
2秒前
顾矜应助zdd采纳,获得10
2秒前
3秒前
林夏应助伯赏盼晴采纳,获得10
3秒前
Hugsy完成签到,获得积分10
4秒前
4秒前
沐沐完成签到,获得积分20
5秒前
zhaoyg发布了新的文献求助10
5秒前
Naomi发布了新的文献求助10
6秒前
6秒前
Bovr完成签到,获得积分20
6秒前
6秒前
6秒前
星辰大海应助友好代亦采纳,获得10
7秒前
7秒前
李健的小迷弟应助Zzziihao采纳,获得10
7秒前
7秒前
深情安青应助Alex采纳,获得10
8秒前
8秒前
8秒前
大胆以蕊完成签到,获得积分10
8秒前
田様应助young406采纳,获得10
9秒前
9秒前
Kkkkkk完成签到,获得积分10
9秒前
10秒前
absorb发布了新的文献求助10
10秒前
lingling发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791