表面粗糙度
人工神经网络
材料科学
遗传算法
Box-Behnken设计
表面光洁度
3d打印机
实验设计
曲面(拓扑)
过程(计算)
级联
算法
响应面法
计算机科学
工程制图
机械工程
复合材料
人工智能
机器学习
工程类
数学
几何学
统计
化学工程
操作系统
作者
Osman Ülkir,Gazi Akgün
标识
DOI:10.1080/13621718.2023.2200572
摘要
The selection of parameters affects the surface roughness in the additive manufacturing process. This study aims to determine the optimal combination of input parameters for predicting and minimising the surface roughness of samples produced by Fused Deposition Modelling on a 3D printer using a cascade-forward neural network (CFNN) and genetic algorithm. Box–Behnken Design with four independent printing parameters at three levels is used, and 25 parts are fabricated with a 3D printer. Roughness tests are performed on the fabricated parts. Models generated by the hybrid algorithm achieve the best results for predicting and optimising surface roughness in 3D-printed parts. The surface roughness prediction accuracy of the trained CFNN with optimised parameters is more accurate compared to previous random test results.
科研通智能强力驱动
Strongly Powered by AbleSci AI