Vision Transformers, Ensemble Model, and Transfer Learning Leveraging Explainable AI for Brain Tumor Detection and Classification

人工智能 计算机科学 磁共振成像 学习迁移 符号 脑瘤 自动定理证明 机器学习 自然语言处理 数学 算法 医学 病理 放射科 算术
作者
Shahriar Hossain,Amitabha Chakrabarty,Thippa Reddy Gadekallu,Mamoun Alazab,Md. Jalil Piran
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1261-1272 被引量:79
标识
DOI:10.1109/jbhi.2023.3266614
摘要

The abnormal growth of malignant or nonmalignant tissues in the brain causes long-term damage to the brain. Magnetic resonance imaging (MRI) is one of the most common methods of detecting brain tumors. To determine whether a patient has a brain tumor, MRI filters are physically examined by experts after they are received. It is possible for MRI images examined by different specialists to produce inconsistent results since professionals formulate evaluations differently. Furthermore, merely identifying a tumor is not enough. To begin treatment as soon as possible, it is equally important to determine the type of tumor the patient has. In this paper, we consider the multiclass classification of brain tumors since significant work has been done on binary classification. In order to detect tumors faster, more unbiased, and reliably, we investigated the performance of several deep learning (DL) architectures including Visual Geometry Group 16 (VGG16), InceptionV3, VGG19, ResNet50, InceptionResNetV2, and Xception. Following this, we propose a transfer learning(TL) based multiclass classification model called IVX16 based on the three best-performing TL models. We use a dataset consisting of a total of 3264 images. Through extensive experiments, we achieve peak accuracy of $95.11\%$ , $93.88\%$ , $94.19\%$ , $93.88\%$ , $93.58\%$ , $94.5\%$ , and $96.94\%$ for VGG16, InceptionV3, VGG19, ResNet50, InceptionResNetV2, Xception, and IVX16, respectively. Furthermore, we use Explainable AI to evaluate the performance and validity of each DL model and implement recently introduced Vison Transformer (ViT) models and compare their obtained output with the TL and ensemble model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Ze2vV8发布了新的文献求助10
1秒前
淡墨花笺发布了新的文献求助30
1秒前
研友_Ze2vV8发布了新的文献求助10
1秒前
研友_Ze2vV8发布了新的文献求助10
1秒前
研友_Ze2vV8发布了新的文献求助10
1秒前
研友_Ze2vV8发布了新的文献求助10
1秒前
研友_Ze2vV8发布了新的文献求助10
1秒前
鲁卓林完成签到,获得积分10
1秒前
ljgdalj发布了新的文献求助10
2秒前
谭志勇爱科研完成签到 ,获得积分10
5秒前
7秒前
冷艳的小翠完成签到,获得积分10
8秒前
小茵茵完成签到,获得积分10
8秒前
罗霄山完成签到,获得积分10
10秒前
襄阳发布了新的文献求助10
12秒前
蒙塔啦完成签到,获得积分10
12秒前
14秒前
共享精神应助所以采纳,获得10
15秒前
16秒前
AteeqBaloch完成签到,获得积分10
17秒前
ding应助23采纳,获得10
18秒前
三谋青年发布了新的文献求助10
19秒前
21秒前
仲夏发布了新的文献求助10
25秒前
26秒前
芒果布丁发布了新的文献求助10
27秒前
28秒前
30秒前
30秒前
款冬完成签到,获得积分10
31秒前
31秒前
zt发布了新的文献求助10
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
所所应助科研通管家采纳,获得10
33秒前
桐桐应助科研通管家采纳,获得10
33秒前
田様应助科研通管家采纳,获得10
33秒前
所所应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
23发布了新的文献求助10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741439
求助须知:如何正确求助?哪些是违规求助? 3284100
关于积分的说明 10038416
捐赠科研通 3000937
什么是DOI,文献DOI怎么找? 1646889
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478