清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Detection and counting of banana bunches by integrating deep learning and classic image-processing algorithms

聚类分析 质心 分割 像素 算法 人工智能 图像处理 计算机科学 数学 模式识别(心理学) 统计 图像(数学) 光学 物理 梁(结构)
作者
Fengyun Wu,Zhou Yang,Xingkang Mo,Zihao Wu,Wei Tang,Jieli Duan,Xiangjun Zou
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:209: 107827-107827 被引量:36
标识
DOI:10.1016/j.compag.2023.107827
摘要

Robots must first detect the number of banana bunches when making judgements on sterile bud removal and estimating weight for harvest in the field environment. Banana bunches are complex in shape, arranged in a nonlinear helical curve along the stalk, and have different growth states in different periods, with bunches widely spaced in the early period and densely arranged in the harvest period. Deep learning nor classical image-processing algorithms alone can detect and count bunches in both periods. Therefore, these algorithms were combined to calculate the number of bunches in the two periods. For counting bunches in the debudding period, the convolutional neural network Deeplab V3 + model and classic image-processing algorithm were combined to finely segment bunches and calculate bunch numbers, providing intelligent decision-making for judgment on the timing for debudding. To count bunches during harvest, based on deep learning to identify the overall banana fruit cluster, the edge detection algorithm was employed to extract the centroid points of fruit fingers, and the clustering algorithm was used to determine the optimal number of bunches on the visual detection surface. An estimation model for the total number of bunches, including hidden ones, was created based on their helical curve arrangement. The results indicated a target segmentation MIoU of 0.878 during the debudding period, a mean pixel precision of 0.936, and a final bunch detection accuracy rate of 86%. Bunch detection was highly challenging during the harvest period, with a detection accuracy rate of 76% and a final overall bunch counting accuracy rate of 93.2%. Software was designed to estimate banana fruit weight during the harvest period. This research method provided a theoretical basis and experimental data support for automatic sterile bud removal and weight estimation for bananas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶痕TNT完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
6秒前
swh完成签到 ,获得积分10
9秒前
善良从露完成签到,获得积分10
10秒前
11秒前
chengmin完成签到 ,获得积分10
12秒前
小白应助善良从露采纳,获得10
12秒前
量子星尘发布了新的文献求助10
15秒前
Miley发布了新的文献求助10
17秒前
yindi1991完成签到 ,获得积分10
19秒前
General完成签到 ,获得积分10
20秒前
孙成成完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
26秒前
34秒前
Leo完成签到 ,获得积分10
37秒前
木又完成签到 ,获得积分10
38秒前
团团完成签到 ,获得积分10
38秒前
九万完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助10
45秒前
巫巫巫巫巫完成签到 ,获得积分10
49秒前
Rangjuan完成签到 ,获得积分10
51秒前
golden完成签到,获得积分10
51秒前
量子星尘发布了新的文献求助10
1分钟前
航行天下完成签到 ,获得积分10
1分钟前
1分钟前
双眼皮跳蚤完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
alanbike完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hcjxj完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
qqaeao完成签到,获得积分10
1分钟前
Chloe完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
秋迎夏完成签到,获得积分10
2分钟前
大大蕾完成签到 ,获得积分0
2分钟前
悠明夜月完成签到 ,获得积分10
2分钟前
平常的三问完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222235
关于积分的说明 9744125
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757798
科研通“疑难数据库(出版商)”最低求助积分说明 734569