Detection and counting of banana bunches by integrating deep learning and classic image-processing algorithms

聚类分析 质心 分割 像素 算法 人工智能 图像处理 计算机科学 数学 模式识别(心理学) 统计 图像(数学) 光学 物理 梁(结构)
作者
Fengyun Wu,Zhou Yang,Xingkang Mo,Zihao Wu,Wei Tang,Jieli Duan,Xiangjun Zou
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:209: 107827-107827 被引量:36
标识
DOI:10.1016/j.compag.2023.107827
摘要

Robots must first detect the number of banana bunches when making judgements on sterile bud removal and estimating weight for harvest in the field environment. Banana bunches are complex in shape, arranged in a nonlinear helical curve along the stalk, and have different growth states in different periods, with bunches widely spaced in the early period and densely arranged in the harvest period. Deep learning nor classical image-processing algorithms alone can detect and count bunches in both periods. Therefore, these algorithms were combined to calculate the number of bunches in the two periods. For counting bunches in the debudding period, the convolutional neural network Deeplab V3 + model and classic image-processing algorithm were combined to finely segment bunches and calculate bunch numbers, providing intelligent decision-making for judgment on the timing for debudding. To count bunches during harvest, based on deep learning to identify the overall banana fruit cluster, the edge detection algorithm was employed to extract the centroid points of fruit fingers, and the clustering algorithm was used to determine the optimal number of bunches on the visual detection surface. An estimation model for the total number of bunches, including hidden ones, was created based on their helical curve arrangement. The results indicated a target segmentation MIoU of 0.878 during the debudding period, a mean pixel precision of 0.936, and a final bunch detection accuracy rate of 86%. Bunch detection was highly challenging during the harvest period, with a detection accuracy rate of 76% and a final overall bunch counting accuracy rate of 93.2%. Software was designed to estimate banana fruit weight during the harvest period. This research method provided a theoretical basis and experimental data support for automatic sterile bud removal and weight estimation for bananas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
决明完成签到,获得积分10
1秒前
LJJ完成签到 ,获得积分10
3秒前
Chao完成签到,获得积分10
4秒前
Math4396完成签到 ,获得积分10
5秒前
吃饱了就晒太阳完成签到,获得积分10
8秒前
芊芊完成签到 ,获得积分10
8秒前
张zhang完成签到 ,获得积分10
11秒前
MADAO完成签到 ,获得积分10
14秒前
jinyu完成签到 ,获得积分10
14秒前
moonlight完成签到,获得积分10
15秒前
LitB完成签到,获得积分0
15秒前
Zzz完成签到,获得积分10
16秒前
研友_n0kjPL完成签到,获得积分0
16秒前
黄迪迪完成签到 ,获得积分10
16秒前
芮安的白丁完成签到 ,获得积分10
17秒前
咎淇完成签到,获得积分10
19秒前
苗条馒头完成签到,获得积分10
23秒前
四叶草完成签到 ,获得积分10
23秒前
zzz完成签到 ,获得积分10
25秒前
llllzzh完成签到 ,获得积分10
28秒前
yull完成签到,获得积分10
30秒前
科研通AI2S应助慕冰蝶采纳,获得10
30秒前
zz完成签到,获得积分20
31秒前
YQT完成签到 ,获得积分10
31秒前
传奇3应助勇往直前采纳,获得10
35秒前
现代雪晴完成签到,获得积分10
35秒前
39秒前
daydayup完成签到 ,获得积分10
42秒前
默默觅珍完成签到 ,获得积分10
44秒前
文献发布了新的文献求助10
44秒前
mlzmlz完成签到,获得积分10
45秒前
轻以完成签到,获得积分10
46秒前
飘文献完成签到,获得积分0
46秒前
fuguier完成签到,获得积分10
50秒前
汲取知识的宁缺毋滥完成签到,获得积分10
54秒前
overThat完成签到,获得积分10
56秒前
在九月完成签到 ,获得积分10
56秒前
ymxlcfc完成签到 ,获得积分10
56秒前
59秒前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137067
求助须知:如何正确求助?哪些是违规求助? 2788055
关于积分的说明 7784485
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625557
版权声明 601010