A novel approach for determining cutting geometry for TBM using full-scale laboratory linear rock cutting and PFC3D-based numerical simulations

比例(比率) 多面体 几何学 数学 算法 物理 量子力学
作者
Prosper Ayawah,Azupuri G. A. Kaba,Leslie Gertsch
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:144: 105559-105559 被引量:6
标识
DOI:10.1016/j.tust.2023.105559
摘要

Efficient rock excavation requires an optimal s-p ratio, where adjacent cuts interact to completely plane the rock surface. Traditionally, the specific energy (SE) methodology has been used to determine this ratio, but its U-shaped curve is sometimes incomplete or absent, making it difficult to find the optimal s-p ratio. In this research, an alternative methodology is proposed. This methodology relies on the morphology of the excavated rock surface, specifically, the amounts of overbreaks. To evaluate the proposed methodology, full-scale rock cutting experiments were conducted in the laboratory. Numerical simulations were also conducted in 3D particle flow code (PFC3D) and the results were validated by the full-scale laboratory rock cutting experimental data. The study also involved conducting sensitivity analyses to evaluate the effectiveness of downscaling and upscaling the PFC3D-based model to obtain results for full-scale applications. Following the excavation, laser profilometry was employed to characterize the excavated rock surfaces, and the resulting profiles were used to calculate the volume of overbreaks. Plots of these volumes against the s-p ratio were generated to identify the optimal s-p ratio. The findings indicated the presence of a noticeable optimal s-p ratio in both the PFC3D-based simulations and full-scale laboratory experiments. This optimal s-p ratio was not evident when the specific energy methodology was employed. This proposed methodology exhibits considerable potential and can prove beneficial in determining cutting geometry that is optimal for site-specific and TBM-specific, as well as in the design and production of tunnel boring machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助zhangzhang采纳,获得10
刚刚
wushangyu发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
ivyyyyyy发布了新的文献求助10
1秒前
科研通AI6应助c程序语言采纳,获得10
2秒前
2秒前
2秒前
2秒前
Juid举报yh求助涉嫌违规
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
隐形曼青应助Luobing采纳,获得10
5秒前
斯文败类应助小凯采纳,获得10
5秒前
5秒前
Owen应助wushangyu采纳,获得10
5秒前
乐瑶完成签到,获得积分10
6秒前
6秒前
Wulingfeng发布了新的文献求助10
6秒前
6秒前
6秒前
迷路的墨镜完成签到,获得积分10
6秒前
6秒前
Lxk发布了新的文献求助10
6秒前
秋墨发布了新的文献求助10
7秒前
gzmejiji完成签到,获得积分10
7秒前
jennifer发布了新的文献求助10
7秒前
7秒前
无极微光应助princess采纳,获得20
8秒前
helen发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
脑洞疼应助聂璐燕采纳,获得10
9秒前
9秒前
祁行云发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609846
求助须知:如何正确求助?哪些是违规求助? 4694420
关于积分的说明 14882214
捐赠科研通 4720449
什么是DOI,文献DOI怎么找? 2544941
邀请新用户注册赠送积分活动 1509785
关于科研通互助平台的介绍 1473002