LCDNet: Lightweight Change Detection Network With Dual-Attention Guidance and Multiscale Feature Fusion for Remote-Sensing Images

计算机科学 对偶(语法数字) 特征提取 特征(语言学) 人工智能 图像融合 传感器融合 计算机视觉 融合 变更检测 模式识别(心理学) 遥感 图像(数学) 地质学 哲学 艺术 文学类 语言学
作者
Junwei Li,Shijie Li,Feng Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3337877
摘要

Deep-learning (DL)-based change detection (CD) techniques have recently become increasingly complex to produce more accurate detection results. However, the increase in complexity leads to reduced efficiency and limits the application of DL-based CD techniques in domains that require real-time performance. To this end, a lightweight CD network (LCDNet) is proposed to accurately recognize changes in remote-sensing (RS) image pairs while maintaining high efficiency. First, a focus module is utilized at the beginning of the encoding layer for the downsampling operation, which reduces the computation of the model and the loss of information. Then, a depthwise (DW) convolution-based efficient extraction block (EEB) is designed by stacking different sizes of convolution kernels for the effective extraction of change features under different receptive fields. Next, a dual-attention guidance module (DAGM) is designed to guide the encoder in processing and selectively aggregating information related to changes. Lastly, a multiscale feature fusion module (MFFM) with low parameters is proposed that combines feature maps of different scales to exploit their complementary information. Compared with other state-of-the-art (SOTA) methods, the proposed LCDNet only requires approximately 0.83 M Params, 2.03 G FLOPs, and 3.03 ms inference time (It) to remarkably surpass them in terms of accuracy. Moreover, compared with other dual-attention and multiscale fusion modules, the proposed DAGM and MFFM are more effective and efficient. The source code will be made available at https://github.com/sjl2023/LCDNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Superan完成签到,获得积分10
2秒前
小哥门完成签到,获得积分10
2秒前
4秒前
5秒前
8秒前
Inevitable发布了新的文献求助10
9秒前
李健应助Roxanne采纳,获得30
9秒前
上官若男应助清脆大米采纳,获得10
9秒前
寻雾启事发布了新的文献求助30
9秒前
直率芮发布了新的文献求助10
9秒前
10秒前
舟舟发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
小程同学发布了新的文献求助10
12秒前
复成完成签到 ,获得积分10
12秒前
混沌应助何平采纳,获得10
13秒前
13秒前
keke发布了新的文献求助10
14秒前
14秒前
bhkwxdxy发布了新的文献求助10
14秒前
15秒前
GH完成签到,获得积分10
15秒前
XLX完成签到,获得积分10
15秒前
小哥门发布了新的文献求助10
16秒前
清脆大米完成签到,获得积分10
18秒前
19秒前
上官若男应助科研通管家采纳,获得30
19秒前
Owen应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
萧水白应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
柯一一应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得30
20秒前
打打应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
小二郎应助嘎嘣脆采纳,获得10
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959547
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126213
捐赠科研通 3237706
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871647
科研通“疑难数据库(出版商)”最低求助积分说明 802931