阳极
无机化学
惰性
锌
吸附
羧酸盐
电解质
水溶液
惰性气体
化学
化学工程
材料科学
有机化学
电极
物理化学
工程类
作者
Hanhao Liang,Jian Wu,Jiancheng Xu,Jiaming Li,Jianglin Wang,Jingbo Cai,Yini Long,Yu Xiao,Zhanhong Yang
出处
期刊:Small
[Wiley]
日期:2023-11-30
被引量:13
标识
DOI:10.1002/smll.202307322
摘要
Abstract Aqueous zinc ion batteries (AZIBs) are considered promising energy storage devices because of their high theoretical energy density and cost‐effectiveness. However, the ongoing side reactions and zinc dendrite growth during cycling limit their practical application. Herein, trisodium methylglycine diacetate (Na 3 MGDA) additive containing the additional inert group methyl is introduced for Zn anode protection, and the contribution of methyl as an inert group to the Zn anode stability is discussed. Experimental results reveal that the methyl group with various effects enhances the interaction between the polar groups in Na 3 MGDA and the Zn 2+ /Zn anode. Thus, the polar carboxylate negative ions in MGDA anions can more easily modify the solvation structure and adsorb on the anode surface in situ to establish a hydrophobic electrical double layer (EDL) layer with steric hindrance effects. Such the EDL layer exhibits a robust selectivity for Zn deposition and a significant inhibition of parasitic reactions. Consequently, the Zn||Zn symmetric battery presents 2375 h at 1 mA cm −2 , 1 mAh cm −2 , and the Zn||V 6 O 13 full battery provides 91% capacity retention after 1300 cycles at 3 A g −1 . This study emphasizes the significant role of inert groups of the additive on the interfacial stability during the plating/stripping of high‐performance AZIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI