TeenyNet: A novel lightweight attention model for sunflower disease detection

向日葵 计算机科学 人工智能 机器学习 特征(语言学) 联营 特征提取 模式识别(心理学) 算法 数学 语言学 组合数学 哲学
作者
Yi Zhong,Mengjun Tong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 035701-035701
标识
DOI:10.1088/1361-6501/ad1152
摘要

Abstract Sunflower is one of the oilseed crops which is popularly and widely cultivated globally and contributes significantly to human health. Leaf diseases of sunflower seriously affect the growth and yield of sunflower, which directly leads to the loss of agricultural economy. However, existing machine learning algorithms and deep learning techniques are mainly based on large models with attention mechanisms, which lack considerations in computational performance, especially model size. Therefore, this study proposes a lightweight model called TeenyNet to break through the dilemma. First, the designed global multi-frequency feature extraction module decomposes the image to extract multi-frequency multi-scale features. Then, a parameter-free maximum pooling layer further extracts edge and texture features and simplifies the network complexity through downsampling, after which the proposed lightweight dual fusion attention and multi-branching structure fuses all the feature vectors to enhance multidimensional feature learning and accelerate the model convergence. Finally, the fully connected linear layer solves the multi-classification problem of sunflower disease under natural illumination background conditions. The experimental results show that TeenyNet obtains the highest accuracy of 98.94% for sunflower disease recognition with a minimum size of 143 KB and has better recognition performance in comparison experiments. TeenyNet can be effectively used for the detection of sunflower leaf diseases to achieve disease prevention and control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DIY101发布了新的文献求助10
刚刚
华仔应助阮逸君采纳,获得10
刚刚
1秒前
忧伤的天真完成签到,获得积分10
2秒前
king_creole完成签到,获得积分10
2秒前
夜狩关注了科研通微信公众号
2秒前
小脸红扑扑完成签到 ,获得积分10
2秒前
富强民主完成签到,获得积分10
2秒前
俏皮沁完成签到,获得积分10
2秒前
唐诗阅完成签到,获得积分10
2秒前
风车术完成签到,获得积分10
3秒前
勤恳化蛹完成签到 ,获得积分10
3秒前
橘子sungua完成签到,获得积分10
4秒前
不是省油的灯完成签到 ,获得积分10
4秒前
4秒前
早睡早起的年轻人完成签到,获得积分10
4秒前
orixero应助yolanda采纳,获得10
5秒前
明亮发布了新的文献求助10
5秒前
不是一个名字完成签到,获得积分10
5秒前
希望天下0贩的0应助siyan156采纳,获得10
5秒前
6秒前
红豆小猫应助积极睫毛采纳,获得10
6秒前
完美麦片完成签到,获得积分10
6秒前
英姑应助tangz采纳,获得10
7秒前
黄瓜橙橙发布了新的文献求助10
7秒前
举不了一点栗子完成签到,获得积分10
7秒前
Andrew完成签到,获得积分10
10秒前
10秒前
景清完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
WLWLW发布了新的文献求助30
12秒前
12秒前
JamesPei应助now采纳,获得10
13秒前
13秒前
维时完成签到,获得积分10
13秒前
K2L完成签到,获得积分10
15秒前
wdy337发布了新的文献求助10
16秒前
火炉猫猫完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044