TeenyNet: A novel lightweight attention model for sunflower disease detection

向日葵 计算机科学 人工智能 机器学习 特征(语言学) 联营 特征提取 模式识别(心理学) 算法 数学 语言学 组合数学 哲学
作者
Yi Zhong,Mengjun Tong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 035701-035701
标识
DOI:10.1088/1361-6501/ad1152
摘要

Abstract Sunflower is one of the oilseed crops which is popularly and widely cultivated globally and contributes significantly to human health. Leaf diseases of sunflower seriously affect the growth and yield of sunflower, which directly leads to the loss of agricultural economy. However, existing machine learning algorithms and deep learning techniques are mainly based on large models with attention mechanisms, which lack considerations in computational performance, especially model size. Therefore, this study proposes a lightweight model called TeenyNet to break through the dilemma. First, the designed global multi-frequency feature extraction module decomposes the image to extract multi-frequency multi-scale features. Then, a parameter-free maximum pooling layer further extracts edge and texture features and simplifies the network complexity through downsampling, after which the proposed lightweight dual fusion attention and multi-branching structure fuses all the feature vectors to enhance multidimensional feature learning and accelerate the model convergence. Finally, the fully connected linear layer solves the multi-classification problem of sunflower disease under natural illumination background conditions. The experimental results show that TeenyNet obtains the highest accuracy of 98.94% for sunflower disease recognition with a minimum size of 143 KB and has better recognition performance in comparison experiments. TeenyNet can be effectively used for the detection of sunflower leaf diseases to achieve disease prevention and control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孤独患者完成签到,获得积分10
1秒前
1秒前
3秒前
斜阳西下柳缠锦完成签到,获得积分10
3秒前
4秒前
科研小白完成签到,获得积分20
4秒前
WMYD完成签到,获得积分10
5秒前
daihq3发布了新的文献求助10
5秒前
5秒前
李玲玲完成签到,获得积分10
6秒前
22发布了新的文献求助10
6秒前
7秒前
化工牛马发布了新的文献求助10
7秒前
上官若男应助chen采纳,获得10
8秒前
8秒前
8秒前
科研小白发布了新的文献求助10
9秒前
10秒前
12秒前
彳亍1117应助九香虫采纳,获得10
12秒前
12秒前
Lucas应助jiaolulu采纳,获得10
13秒前
大肥猫发布了新的文献求助10
13秒前
13秒前
13秒前
共享精神应助plh采纳,获得10
13秒前
爱笑的眼睛完成签到,获得积分10
13秒前
Ava应助daihq3采纳,获得10
13秒前
lxt完成签到,获得积分10
14秒前
华华完成签到 ,获得积分10
15秒前
孤独患者发布了新的文献求助10
15秒前
pupu发布了新的文献求助10
15秒前
INBI发布了新的文献求助10
17秒前
榞榞发布了新的文献求助10
17秒前
九姑娘完成签到 ,获得积分10
17秒前
18秒前
19秒前
绝尘发布了新的文献求助10
20秒前
22完成签到,获得积分10
20秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214096
求助须知:如何正确求助?哪些是违规求助? 2862821
关于积分的说明 8135428
捐赠科研通 2529067
什么是DOI,文献DOI怎么找? 1363155
科研通“疑难数据库(出版商)”最低求助积分说明 643769
邀请新用户注册赠送积分活动 616215