TeenyNet: A novel lightweight attention model for sunflower disease detection

向日葵 计算机科学 人工智能 机器学习 特征(语言学) 联营 特征提取 模式识别(心理学) 算法 数学 语言学 组合数学 哲学
作者
Yi Zhong,Mengjun Tong
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 035701-035701
标识
DOI:10.1088/1361-6501/ad1152
摘要

Abstract Sunflower is one of the oilseed crops which is popularly and widely cultivated globally and contributes significantly to human health. Leaf diseases of sunflower seriously affect the growth and yield of sunflower, which directly leads to the loss of agricultural economy. However, existing machine learning algorithms and deep learning techniques are mainly based on large models with attention mechanisms, which lack considerations in computational performance, especially model size. Therefore, this study proposes a lightweight model called TeenyNet to break through the dilemma. First, the designed global multi-frequency feature extraction module decomposes the image to extract multi-frequency multi-scale features. Then, a parameter-free maximum pooling layer further extracts edge and texture features and simplifies the network complexity through downsampling, after which the proposed lightweight dual fusion attention and multi-branching structure fuses all the feature vectors to enhance multidimensional feature learning and accelerate the model convergence. Finally, the fully connected linear layer solves the multi-classification problem of sunflower disease under natural illumination background conditions. The experimental results show that TeenyNet obtains the highest accuracy of 98.94% for sunflower disease recognition with a minimum size of 143 KB and has better recognition performance in comparison experiments. TeenyNet can be effectively used for the detection of sunflower leaf diseases to achieve disease prevention and control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
健忘可愁完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
lzy完成签到,获得积分20
5秒前
充电宝应助XLX采纳,获得10
7秒前
7秒前
0x3f发布了新的文献求助10
7秒前
轻松夜山完成签到,获得积分20
7秒前
科研小白发布了新的文献求助10
7秒前
watsonhe发布了新的文献求助10
8秒前
9秒前
正直白梅完成签到,获得积分10
10秒前
10秒前
壮观的丑完成签到,获得积分10
10秒前
11秒前
后仰跳投so难完成签到,获得积分10
11秒前
Owen应助Arctic采纳,获得10
12秒前
12秒前
xiaozhao完成签到,获得积分10
13秒前
13秒前
yi417发布了新的文献求助10
13秒前
14秒前
pluto应助一一采纳,获得10
14秒前
15秒前
所所应助阿笠采纳,获得80
15秒前
16秒前
琪琪完成签到,获得积分10
18秒前
19秒前
19秒前
逸仙完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
mangata发布了新的文献求助10
20秒前
C14H10发布了新的文献求助10
20秒前
bkagyin应助yi417采纳,获得10
20秒前
金禧发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602321
求助须知:如何正确求助?哪些是违规求助? 4687452
关于积分的说明 14849525
捐赠科研通 4683682
什么是DOI,文献DOI怎么找? 2539839
邀请新用户注册赠送积分活动 1506555
关于科研通互助平台的介绍 1471414