特征选择
水准点(测量)
人工智能
计算机科学
特征(语言学)
过程(计算)
模式识别(心理学)
领域(数学分析)
功能(生物学)
分歧(语言学)
数据挖掘
选择(遗传算法)
机器学习
数学
操作系统
数学分析
语言学
哲学
大地测量学
进化生物学
生物
地理
作者
Haipei Dong,Fuli Wang,Dakuo He
标识
DOI:10.1109/ccdc58219.2023.10327281
摘要
The copper flotation process design is a multi label learning. Before multi label classification and regression, label-specific features for each label need to be selected from the original features. This paper puts forward a multi label feature selection (MLFS) based on domain knowledge and label correlation. In the proposed MLFS, the domain knowledge function applies the knowledge of copper flotation in feature selection, and the label correlation function introduces the Kullback Leibler divergence between labels in feature selection. The experimental results demonstrate that the proposed MLFS has superiority over benchmark multi label feature selection algorithms in the copper flotation backbone process design.
科研通智能强力驱动
Strongly Powered by AbleSci AI