Low-cost data-driven estimation of indoor occupancy based on carbon dioxide (CO2) concentration: A multi-scenario case study

暖通空调 占用率 计算机科学 楼宇自动化 阿什拉1.90 随机森林 感知器 能源消耗 实时计算 机器学习 人工神经网络 工程类 空调 建筑工程 气象学 机械工程 物理 热力学 电气工程
作者
Xiguan Liang,Jisoo Shim,Owen Anderton,Doosam Song
出处
期刊:Journal of building engineering [Elsevier]
卷期号:82: 108180-108180 被引量:2
标识
DOI:10.1016/j.jobe.2023.108180
摘要

Occupancy levels significantly influence HVAC system operation, making accurate occupancy prediction essential for the advancement of Occupant-Centered HVAC control. This study aims to develop a simple and effective occupant prediction model in buildings using low-cost indoor environmental sensors and artificial intelligence technology. In-situ measurements were taken in two university classrooms in South Korea over a three-month period, collecting data on indoor and outdoor temperature, humidity, and CO2 levels. Five machine learning algorithms, including Linear Regression (LR), Random Forest (RF), Gradient Boosting Regression (GBR), Multi-Layer Perceptron (MLP), and Long Short-Term Memory neural networks (LSTM), were applied to compare models of indoor occupancy. The results demonstrate that, among the five machine learning models evaluated, the LSTM model outperforms the others, achieving an RMSE of 3.43. This result indicates a close match between predicted and actual indoor occupancy based on CO2 concentration. The integration of a multivariate multi-step input method further enhances its accuracy, making it suitable for a variety of real-world scenarios in indoor occupancy prediction. This study reveals that using processed data as input sources leads to improved prediction performance for indoor occupant states. Importantly, this work does not infringe on biometric information, such as human image privacy, and relies on minimal measurement data. Furthermore, it not only emphasizes the model's feasibility and practicality in predicting indoor occupancy but also its potential in HVAC system automation, building energy conservation, and indoor environmental management. This study offers guidance and support for the advancement of smart cities and intelligent buildings in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿巴阿巴阿巴完成签到,获得积分10
1秒前
时尚铁身完成签到 ,获得积分10
3秒前
3秒前
CucRuotThua完成签到,获得积分10
3秒前
单身的觅儿完成签到,获得积分10
4秒前
彭于彦祖应助忐忑的老虎采纳,获得20
8秒前
彭于晏应助zaafbb采纳,获得30
9秒前
碳酸芙兰发布了新的文献求助10
9秒前
9秒前
9秒前
无私的小鸽子完成签到,获得积分10
10秒前
Li完成签到,获得积分10
12秒前
Ava应助CucRuotThua采纳,获得10
14秒前
satchzhao完成签到,获得积分10
14秒前
77发布了新的文献求助10
15秒前
16秒前
18秒前
19秒前
msk完成签到 ,获得积分10
19秒前
忐忑的老虎完成签到,获得积分10
20秒前
DRYAN完成签到,获得积分10
20秒前
20秒前
21秒前
调研昵称发布了新的文献求助10
21秒前
一篇吃不饱应助fifteen采纳,获得10
21秒前
海阔天空发布了新的文献求助10
21秒前
111完成签到,获得积分10
22秒前
飞鸿踏雪泥完成签到 ,获得积分10
22秒前
负责蜜蜂发布了新的文献求助10
23秒前
coconut发布了新的文献求助30
24秒前
28秒前
29秒前
29秒前
32秒前
Renee应助负责蜜蜂采纳,获得10
32秒前
乐乐应助Liuu采纳,获得10
32秒前
搜集达人应助算了就这采纳,获得30
33秒前
超级瑶瑶完成签到,获得积分20
33秒前
34秒前
白翊辰完成签到,获得积分20
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160924
求助须知:如何正确求助?哪些是违规求助? 2812163
关于积分的说明 7894580
捐赠科研通 2471015
什么是DOI,文献DOI怎么找? 1315853
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068