Low-cost data-driven estimation of indoor occupancy based on carbon dioxide (CO2) concentration: A multi-scenario case study

暖通空调 占用率 计算机科学 楼宇自动化 阿什拉1.90 随机森林 感知器 能源消耗 实时计算 机器学习 人工神经网络 工程类 空调 建筑工程 气象学 机械工程 物理 热力学 电气工程
作者
Xiguan Liang,Jisoo Shim,Owen Anderton,Doosam Song
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:82: 108180-108180 被引量:2
标识
DOI:10.1016/j.jobe.2023.108180
摘要

Occupancy levels significantly influence HVAC system operation, making accurate occupancy prediction essential for the advancement of Occupant-Centered HVAC control. This study aims to develop a simple and effective occupant prediction model in buildings using low-cost indoor environmental sensors and artificial intelligence technology. In-situ measurements were taken in two university classrooms in South Korea over a three-month period, collecting data on indoor and outdoor temperature, humidity, and CO2 levels. Five machine learning algorithms, including Linear Regression (LR), Random Forest (RF), Gradient Boosting Regression (GBR), Multi-Layer Perceptron (MLP), and Long Short-Term Memory neural networks (LSTM), were applied to compare models of indoor occupancy. The results demonstrate that, among the five machine learning models evaluated, the LSTM model outperforms the others, achieving an RMSE of 3.43. This result indicates a close match between predicted and actual indoor occupancy based on CO2 concentration. The integration of a multivariate multi-step input method further enhances its accuracy, making it suitable for a variety of real-world scenarios in indoor occupancy prediction. This study reveals that using processed data as input sources leads to improved prediction performance for indoor occupant states. Importantly, this work does not infringe on biometric information, such as human image privacy, and relies on minimal measurement data. Furthermore, it not only emphasizes the model's feasibility and practicality in predicting indoor occupancy but also its potential in HVAC system automation, building energy conservation, and indoor environmental management. This study offers guidance and support for the advancement of smart cities and intelligent buildings in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
yqc发布了新的文献求助10
4秒前
XinyuLu完成签到,获得积分10
5秒前
hmlee123完成签到,获得积分10
6秒前
思维隋发布了新的文献求助10
7秒前
7秒前
张北海应助孙淼采纳,获得20
8秒前
Yucorn完成签到 ,获得积分10
9秒前
Persist6578完成签到 ,获得积分10
10秒前
解语花发布了新的文献求助10
12秒前
马不停蹄发布了新的文献求助10
13秒前
搜集达人应助科多兽骑士采纳,获得10
14秒前
CodeCraft应助文茵采纳,获得10
15秒前
闹闹完成签到 ,获得积分10
18秒前
李爱国应助rurui采纳,获得10
19秒前
21秒前
赫幼蓉完成签到 ,获得积分10
21秒前
22秒前
峰峰完成签到,获得积分10
23秒前
25秒前
26秒前
28秒前
cc发布了新的文献求助10
28秒前
文茵发布了新的文献求助10
29秒前
九鸢发布了新的文献求助10
29秒前
yqc完成签到,获得积分20
31秒前
Rondab应助honey采纳,获得10
31秒前
HYY完成签到 ,获得积分10
32秒前
调调发布了新的文献求助10
32秒前
luqong完成签到,获得积分0
32秒前
Su73发布了新的文献求助10
34秒前
oolivy发布了新的文献求助20
36秒前
cc完成签到,获得积分10
39秒前
40秒前
止戈发布了新的文献求助50
46秒前
46秒前
英姑应助科研通管家采纳,获得10
46秒前
乐乐应助科研通管家采纳,获得10
46秒前
丘比特应助科研通管家采纳,获得10
46秒前
慕青应助科研通管家采纳,获得10
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629