Low-cost data-driven estimation of indoor occupancy based on carbon dioxide (CO2) concentration: A multi-scenario case study

暖通空调 占用率 计算机科学 楼宇自动化 阿什拉1.90 随机森林 感知器 能源消耗 实时计算 机器学习 人工神经网络 工程类 空调 建筑工程 气象学 机械工程 物理 热力学 电气工程
作者
Xiguan Liang,Jisoo Shim,Owen Anderton,Doosam Song
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:82: 108180-108180 被引量:2
标识
DOI:10.1016/j.jobe.2023.108180
摘要

Occupancy levels significantly influence HVAC system operation, making accurate occupancy prediction essential for the advancement of Occupant-Centered HVAC control. This study aims to develop a simple and effective occupant prediction model in buildings using low-cost indoor environmental sensors and artificial intelligence technology. In-situ measurements were taken in two university classrooms in South Korea over a three-month period, collecting data on indoor and outdoor temperature, humidity, and CO2 levels. Five machine learning algorithms, including Linear Regression (LR), Random Forest (RF), Gradient Boosting Regression (GBR), Multi-Layer Perceptron (MLP), and Long Short-Term Memory neural networks (LSTM), were applied to compare models of indoor occupancy. The results demonstrate that, among the five machine learning models evaluated, the LSTM model outperforms the others, achieving an RMSE of 3.43. This result indicates a close match between predicted and actual indoor occupancy based on CO2 concentration. The integration of a multivariate multi-step input method further enhances its accuracy, making it suitable for a variety of real-world scenarios in indoor occupancy prediction. This study reveals that using processed data as input sources leads to improved prediction performance for indoor occupant states. Importantly, this work does not infringe on biometric information, such as human image privacy, and relies on minimal measurement data. Furthermore, it not only emphasizes the model's feasibility and practicality in predicting indoor occupancy but also its potential in HVAC system automation, building energy conservation, and indoor environmental management. This study offers guidance and support for the advancement of smart cities and intelligent buildings in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
桐桐应助甜甜亦丝采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
鱼鱼完成签到 ,获得积分10
4秒前
6秒前
汉堡包应助人间不清醒采纳,获得10
7秒前
香蕉觅云应助林途采纳,获得10
8秒前
coco发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
fifteen应助我们太久没见了采纳,获得10
11秒前
13秒前
kunny完成签到 ,获得积分10
14秒前
15秒前
科研通AI6应助qi采纳,获得30
15秒前
16秒前
尧风完成签到 ,获得积分10
16秒前
16秒前
17秒前
火之高兴完成签到,获得积分10
17秒前
动听千风完成签到,获得积分10
18秒前
快乐小狗发布了新的文献求助10
18秒前
无情颖完成签到 ,获得积分10
19秒前
甜甜亦丝发布了新的文献求助10
20秒前
20秒前
汉堡包应助迷人的山灵采纳,获得10
20秒前
20秒前
bkagyin应助孙勇发采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
林途发布了新的文献求助10
22秒前
aiomn完成签到 ,获得积分10
22秒前
李健应助桃桃星冰乐采纳,获得10
22秒前
动听千风发布了新的文献求助10
22秒前
ZBY完成签到,获得积分10
22秒前
鱼跃完成签到,获得积分10
22秒前
vivy完成签到 ,获得积分10
23秒前
腰果虾仁发布了新的文献求助10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971