亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low-cost data-driven estimation of indoor occupancy based on carbon dioxide (CO2) concentration: A multi-scenario case study

暖通空调 占用率 计算机科学 楼宇自动化 阿什拉1.90 随机森林 感知器 能源消耗 实时计算 机器学习 人工神经网络 工程类 空调 建筑工程 气象学 物理 电气工程 热力学 机械工程
作者
Xiguan Liang,Jisoo Shim,Owen Anderton,Doosam Song
出处
期刊:Journal of building engineering [Elsevier]
卷期号:82: 108180-108180 被引量:2
标识
DOI:10.1016/j.jobe.2023.108180
摘要

Occupancy levels significantly influence HVAC system operation, making accurate occupancy prediction essential for the advancement of Occupant-Centered HVAC control. This study aims to develop a simple and effective occupant prediction model in buildings using low-cost indoor environmental sensors and artificial intelligence technology. In-situ measurements were taken in two university classrooms in South Korea over a three-month period, collecting data on indoor and outdoor temperature, humidity, and CO2 levels. Five machine learning algorithms, including Linear Regression (LR), Random Forest (RF), Gradient Boosting Regression (GBR), Multi-Layer Perceptron (MLP), and Long Short-Term Memory neural networks (LSTM), were applied to compare models of indoor occupancy. The results demonstrate that, among the five machine learning models evaluated, the LSTM model outperforms the others, achieving an RMSE of 3.43. This result indicates a close match between predicted and actual indoor occupancy based on CO2 concentration. The integration of a multivariate multi-step input method further enhances its accuracy, making it suitable for a variety of real-world scenarios in indoor occupancy prediction. This study reveals that using processed data as input sources leads to improved prediction performance for indoor occupant states. Importantly, this work does not infringe on biometric information, such as human image privacy, and relies on minimal measurement data. Furthermore, it not only emphasizes the model's feasibility and practicality in predicting indoor occupancy but also its potential in HVAC system automation, building energy conservation, and indoor environmental management. This study offers guidance and support for the advancement of smart cities and intelligent buildings in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xin发布了新的文献求助10
1秒前
SUNny发布了新的文献求助10
7秒前
搬砖的化学男完成签到 ,获得积分10
14秒前
Panther完成签到,获得积分10
17秒前
sailingluwl完成签到,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
SUNny发布了新的文献求助10
47秒前
笑傲完成签到,获得积分10
1分钟前
开心每一天完成签到 ,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
杨泽宇发布了新的文献求助10
2分钟前
日常K人完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
SnowElf完成签到,获得积分10
3分钟前
3分钟前
hongye发布了新的文献求助30
3分钟前
SnowElf发布了新的文献求助10
3分钟前
3分钟前
3分钟前
orangel发布了新的文献求助10
3分钟前
hongye完成签到 ,获得积分10
3分钟前
小粒橙完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
HaoZhang发布了新的文献求助10
4分钟前
HaoZhang完成签到,获得积分20
4分钟前
尼古拉斯铁柱完成签到 ,获得积分10
4分钟前
矜持完成签到 ,获得积分10
4分钟前
Mic应助笑点低的斑马采纳,获得10
4分钟前
lixuebin发布了新的文献求助10
5分钟前
5分钟前
小白发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863764
关于积分的说明 15107879
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581988
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494505