Topolink™: Advancing Cancer Genomics with a High-Resolution, High-Throughput Approach for Low Sequencing and Highly Sensitive Detection of Structural Variants

计算生物学 生物 大规模并行测序 遗传学 基因组学 基因组 DNA测序 表观遗传学 结构变异 基因
作者
Philip J. Uren,Jonathon Torchia,Daniel Hwang,Mark Wadolkowski,Natalie Fredriksson,Marco Blanchette,Lisa Munding
出处
期刊:Blood [Elsevier BV]
卷期号:142 (Supplement 1): 7162-7162
标识
DOI:10.1182/blood-2023-187888
摘要

Despite numerous technological advances, including the widespread adoption of massively parallel genome sequencing, many clinically relevant cancer driver mutations go undetected. Additionally, even with the most comprehensive cancer profiling using a combination of whole genome and whole transcriptome sequencing, a driver mutation goes undetected in approximately 20% of cancers, making targeted treatment of these patients challenging. The reason for this gap in understanding is presumably two-fold: 1) current technologies do not have the required sensitivity for detection of the causative variants; or 2) causative variants are epigenetic or regulatory in nature, meaning the driving alteration does not result in a change to the core DNA sequence. An explanation for 1) is that structural variants (SVs) are particularly challenging to detect using shotgun-based approaches, since these depends on the presence of specific chimeric molecules within the library that directly span or bridge the breakpoint. Long-read technologies circumvent this limitation but have significant drawbacks with respect to cost and strict sample requirements. Another possibility is that standard sequencing - which results in hundreds or thousands of variants of unknown significance (VUS) - may in fact contain causative variants, but our understanding of function of these variants is limited. For 2), it is increasingly appreciated that epigenetic and chromatin topological features are fundamental in the gene regulation and disease. To address this gap in our understanding of cancer, we utilized TopoLink™ proximity ligation library protocol that yields high-quality, high-resolution, unbiased HiC libraries and that can be performed in under 8 hours. To our knowledge, TopoLink™ is the first and only assay of its kind. Proximity ligation offers enhanced sensitivity for detection of SVs, and the restriction enzyme-free digestion method ensures the uniform coverage needed for accurate detection of single nucleotide variations (SNVs) and copy number variants (CNVs). To our knowledge, TopoLink™ is the first and only assay combine the speed, throughput, and unbiased primary base coverage of WGS with the improved detection of large SVs in Hi-C data. Detection of SVs provides a critical basis for personalized therapies in hematological cancers. To test the ability of TopoLink™ to detect clinically relevant SVs, we used the BCR-ABL1 positive CML cell line K562 to determine the limit of detection of interchromosomal translocations. In addition, we calculated the sensitivity of SV detection relative to current industry-leading sequencing technologies using the breast carcinoma cell line HCC1187 gold standard. We noted enhanced sensitivity for SV detection for TopoLink™ relative to both long-read technologies and WGS. Using TopoLink™, sensitivity was greater than 95% at a genome coverage of less than 1x, whereas both long-read and WGS sensitivity drops below 95% sensitivity at approximately 10x genome coverage. Similarly, using hybridization capture of BCR-ABL1 in a TopoLink™ library of K562 cells reduced the required sequencing burden by 10-fold relative to standard shotgun approaches. Importantly, we demonstrate that TopoLink™ libraries maintain topological features consistent with biologically relevant topologically-associated domains (TADs) and chromatin loops, thus enabling insight into novel epigenetic cancer drivers. Therefore, we demonstrate TopoLink™ proximity ligation libraries as a complementary technique that offers enhanced sensitivity of clinically relevant structural variants, with the added benefit of improving discovery of novel epigenetic mechanisms. Finally, the reduced sequencing costs needed to detect clinically relevant SVs allows for improved diagnostics and personalized medicine in a clinical or translational research setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊啊完成签到,获得积分20
1秒前
月上柳梢头A1完成签到,获得积分10
2秒前
无花果应助淡然老头采纳,获得10
5秒前
6秒前
李健的粉丝团团长应助ylh采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
轻松妙柏完成签到,获得积分10
12秒前
13秒前
Chenq1nss完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
丸橙完成签到,获得积分10
16秒前
超级芷云发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
19秒前
ylh发布了新的文献求助10
20秒前
21秒前
22秒前
丸橙发布了新的文献求助10
22秒前
朴素蝴蝶发布了新的文献求助10
22秒前
脑洞疼应助Lzt采纳,获得10
23秒前
李健应助ssyl34采纳,获得30
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309