Current Status and Future Directions: The Application of Artificial Intelligence/Machine Learning for Precision Medicine

精密医学 人工智能 机器学习 鉴定(生物学) 计算机科学 模式 数据科学 知识产权 数据共享 知识管理 医学 病理 社会科学 植物 替代医学 社会学 生物 操作系统
作者
Kunal Naik,Rahul K. Goyal,Luca Foschini,Choiwai Maggie Chak,Christian Thielscher,Hao Zhu,James Lu,Joseph Lehár,Michael A. Pacanoswki,Nadia Terranova,Neha Mehta,Niklas Korsbo,Tala Fakhouri,Qi Liu,Jogarao Gobburu
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:115 (4): 673-686 被引量:5
标识
DOI:10.1002/cpt.3152
摘要

Technological innovations, such as artificial intelligence (AI) and machine learning (ML), have the potential to expedite the goal of precision medicine, especially when combined with increased capacity for voluminous data from multiple sources and expanded therapeutic modalities; however, they also present several challenges. In this communication, we first discuss the goals of precision medicine, and contextualize the use of AI in precision medicine by showcasing innovative applications (e.g., prediction of tumor growth and overall survival, biomarker identification using biomedical images, and identification of patient population for clinical practice) which were presented during the February 2023 virtual public workshop entitled “Application of Artificial Intelligence and Machine Learning for Precision Medicine,” hosted by the US Food and Drug Administration (FDA) and University of Maryland Center of Excellence in Regulatory Science and Innovation (M‐CERSI). Next, we put forward challenges brought about by the multidisciplinary nature of AI, particularly highlighting the need for AI to be trustworthy. To address such challenges, we subsequently note practical approaches, viz., differential privacy, synthetic data generation, and federated learning. The proposed strategies – some of which are highlighted presentations from the workshop – are for the protection of personal information and intellectual property. In addition, methods such as the risk‐based management approach and the need for an agile regulatory ecosystem are discussed. Finally, we lay out a call for action that includes sharing of data and algorithms, development of regulatory guidance documents, and pooling of expertise from a broad‐spectrum of stakeholders to enhance the application of AI in precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方捕完成签到,获得积分10
1秒前
7秒前
仁爱的伯云完成签到,获得积分10
7秒前
研友_VZG7GZ应助陈隆采纳,获得10
9秒前
関电脑完成签到,获得积分10
9秒前
领导范儿应助漂泊1991采纳,获得10
11秒前
11秒前
周周发布了新的文献求助10
12秒前
13秒前
传奇3应助sy采纳,获得10
14秒前
bianting发布了新的文献求助10
14秒前
美好丹妗完成签到,获得积分10
15秒前
852应助lxy采纳,获得10
16秒前
任小九发布了新的文献求助10
17秒前
追寻不平发布了新的文献求助10
18秒前
19秒前
lishui完成签到 ,获得积分10
19秒前
李想完成签到,获得积分10
19秒前
baiyi2024发布了新的文献求助10
21秒前
大个应助123456采纳,获得10
22秒前
嗨哈尼发布了新的文献求助10
23秒前
kkk发布了新的文献求助20
23秒前
SharonDu发布了新的文献求助20
23秒前
干净冰双关注了科研通微信公众号
24秒前
八年荒发布了新的文献求助10
25秒前
今后应助贪玩绮南采纳,获得10
27秒前
雨柏完成签到 ,获得积分10
27秒前
研友_VZG7GZ应助追寻不平采纳,获得10
28秒前
29秒前
31秒前
酷炫翠桃应助Cmy采纳,获得10
33秒前
在水一方应助干净姝底物采纳,获得10
34秒前
lxy发布了新的文献求助10
34秒前
35秒前
36秒前
123456发布了新的文献求助10
36秒前
宵宵发布了新的文献求助10
38秒前
血鸚鵡完成签到,获得积分10
39秒前
贪玩绮南发布了新的文献求助10
40秒前
哎呦喂发布了新的文献求助10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160995
求助须知:如何正确求助?哪些是违规求助? 2812220
关于积分的说明 7894949
捐赠科研通 2471119
什么是DOI,文献DOI怎么找? 1315906
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086