催化作用
二氧化碳
Boosting(机器学习)
二氧化碳电化学还原
Atom(片上系统)
电化学
电催化剂
化学
还原(数学)
碳纤维
材料科学
化学工程
无机化学
物理化学
一氧化碳
有机化学
工程类
复合数
复合材料
嵌入式系统
几何学
数学
计算机科学
机器学习
电极
作者
Zhaoyong Jin,Dongxu Jiao,Yilong Dong,Lin Liu,Jinchang Fan,Ming Gong,Xingcheng Ma,Ying Wang,Wei Zhang,Lei Zhang,Zhi Gen Yu,Damien Voiry,Weitao Zheng,Xiaoqiang Cui
出处
期刊:Angewandte Chemie
[Wiley]
日期:2023-12-16
卷期号:63 (6): e202318246-e202318246
被引量:86
标识
DOI:10.1002/anie.202318246
摘要
Abstract Addressing the limitations arising from the consistent catalytic behavior observed for various intermediates during the electrochemical carbon dioxide reduction reaction (CO 2 RR) poses a significant challenge in the optimization of catalytic activity. In this study, we aimed to address this challenge by constructing an asymmetric coordination Fe single atom catalyst (SCA) with a dynamically evolved structure. Our catalyst, consisting of a Fe atom coordinated with one S atom and three N atoms (Fe−S 1 N 3 ), exhibited exceptional selectivity (CO Faradaic efficiency of 99.02 %) and demonstrated a high intrinsic activity (TOF of 7804.34 h −1 ), and remarkable stability. Using operando XAFS spectra and Density Functional Theory (DFT) calculations, we elucidated the self‐relaxation of geometric distortion and dynamic evolution of bond lengths within the catalyst. These structure changes enabled independent regulation of the *COOH and *CO intermediate adsorption energies, effectively breaking the linear scale relationship and enhancing the intrinsic activity of CO 2 RR. This study provides valuable insights into the dynamic evolution of SACs and paves the way for targeted catalyst designs aimed to disrupt the linear scaling relationships.
科研通智能强力驱动
Strongly Powered by AbleSci AI