Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models

循环神经网络 自回归积分移动平均 人工神经网络 多元统计 波动性(金融) 计量经济学 时间序列 计算机科学 数学 人工智能 机器学习
作者
David H. Hopfe,K.M. Lee,Chunyan Yu
出处
期刊:Journal of Air Transport Management [Elsevier BV]
卷期号:115: 102525-102525
标识
DOI:10.1016/j.jairtraman.2023.102525
摘要

Recurrent Neural Networks (RNNs), known for handling complex data tasks like language translation and speech recognition, are seldom employed in airport management practice for daily and weekly passenger flow forecasting tasks. In this paper, we evaluate the effectiveness and adaptability of various neural network models (RNN, LSTM, GRU, Deep LSTM, Bidirectional LSTM, multivariate RNN, and multivariate LSTM) against standard time series models (ARIMA, SARIMA, and SARIMAX) for a short-term forecasting airport security checkpoint passenger flows at five major U.S. airports during the pandemic. At Atlanta’s Hartsfield-Jackson Airport (ATL), the RNN notably surpasses SARIMA’s forecasting accuracy by 34% (DM = 3.44, p < 0.01). This underscores RNN’s superiority in handling complex interactions among variables and non-linear dynamics, demonstrating its readiness for the emerging data-rich environment. Including exogenous variables enhances the forecasting accuracies of the multivariate RNN/LSTM (DM = 6.82, p < 0.01; DM = 2.65, p < 0.01, respectively), while the SARIMAX struggles with the added complexity. We observed the same patterns at the other four airports studied (DEN/ORD/LAX/DFW) during the pandemic period. However, during the normal airport traffic period, the clear superiority of RNN became much less pronounced, obscuring the performance gap between RNN and SARIMA. This suggests that the inherent advantages of RNN in capturing non-linearity are accentuated during volatile conditions and less pronounced or not pronounced at all during routine periods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助liyu采纳,获得10
刚刚
1.1发布了新的文献求助10
1秒前
隐形曼青应助全智甜采纳,获得10
2秒前
坚定冬易完成签到,获得积分10
3秒前
白瓜完成签到 ,获得积分10
4秒前
派大星完成签到 ,获得积分10
5秒前
坚定冬易发布了新的文献求助10
5秒前
7秒前
stephen_wang完成签到,获得积分10
7秒前
8秒前
星星完成签到 ,获得积分10
13秒前
fightingwu发布了新的文献求助20
14秒前
16秒前
科研通AI5应助聪慧的娜采纳,获得10
16秒前
善学以致用应助Liujiawen0008采纳,获得10
19秒前
凡平完成签到,获得积分10
19秒前
OuO完成签到,获得积分10
20秒前
22秒前
23秒前
dophin完成签到,获得积分0
25秒前
自信鞯完成签到,获得积分10
26秒前
26秒前
fightingwu完成签到,获得积分10
28秒前
28秒前
jiajia发布了新的文献求助10
28秒前
巧巧艾完成签到,获得积分10
30秒前
聪慧的娜发布了新的文献求助10
32秒前
32秒前
科研通AI5应助俊逸的翠容采纳,获得10
32秒前
34秒前
小红书求接接接接一篇完成签到,获得积分20
35秒前
科研通AI5应助超酷的柠檬采纳,获得10
38秒前
38秒前
风汐5423发布了新的文献求助10
39秒前
Lucas应助木木火正采纳,获得10
40秒前
白宇完成签到 ,获得积分10
41秒前
人各有痣完成签到,获得积分10
41秒前
落红雨完成签到 ,获得积分10
44秒前
汉堡包应助火星上的沛春采纳,获得10
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667828
求助须知:如何正确求助?哪些是违规求助? 3226294
关于积分的说明 9769102
捐赠科研通 2936239
什么是DOI,文献DOI怎么找? 1608345
邀请新用户注册赠送积分活动 759646
科研通“疑难数据库(出版商)”最低求助积分说明 735434