清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning-coupled vertical graphene triboelectric pressure sensors array as artificial tactile receptor for finger action recognition

摩擦电效应 材料科学 可穿戴计算机 触觉传感器 压力传感器 人工神经网络 人工智能 机械工程 计算机科学 复合材料 机器人 嵌入式系统 工程类
作者
Tiancheng Sun,Chuanjie Yao,Zhengjie Liu,Shuang Huang,Xinshuo Huang,Shantao Zheng,Jing Liu,Peng Shi,Tao Zhang,Houhua Chen,Hui‐Jiuan Chen,Xi Xie
出处
期刊:Nano Energy [Elsevier]
卷期号:123: 109395-109395 被引量:8
标识
DOI:10.1016/j.nanoen.2024.109395
摘要

Wearable pressure sensors have been emerging for recording human biomechanical information during movement and action behavior. When combined with advanced signals processing and analysis methods, these sensors may offer the opportunities of recognizing patterns in specific human actions. In this study, we proposed a machine learning-coupled vertical graphene triboelectric pressure sensors array (ML-vGTEPS array), which could serve as artificial finger tactile receptors for sensing pressure patterns generated by specific finger actions. By utilizing the vertical graphene (vG) with excellent electrical properties and unique nanostructure as the key friction layer, the triboelectric sensor exhibited high sensitivity and broad sensing range. Ten sets of triboelectric sensors are integrated and designed as wearable devices on fingers, which could transmit multi-channel tactile signals under different finger actions with minimal crosstalk. Taking the tracking technical actions of playing table tennis as an example, 16 types of finger tactile signals generated during specific table tennis technical actions were obtained using a self-designed acquisition hardware. Action recognition with high accuracy (98.1%) was achieved by a fully connected neural network (FCNN) deep learning model, serving as validation for the ML-vGTEPS Array in action monitoring and recognition. The exemplary recognition results demonstrated the potential of the ML-vGTEPS Array as a high-performance technique for human-machine interface, intelligent athletic training, telemedicine, and applications in virtual reality/augmented reality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
迅速灵竹完成签到 ,获得积分10
1分钟前
魏白晴完成签到,获得积分10
1分钟前
1分钟前
joe完成签到 ,获得积分0
1分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
chiyudoubao发布了新的文献求助10
4分钟前
共享精神应助looper采纳,获得30
4分钟前
4分钟前
4分钟前
爱心完成签到 ,获得积分10
4分钟前
暴躁的老哥应助猫七采纳,获得30
5分钟前
5分钟前
looper发布了新的文献求助30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
Ashley完成签到,获得积分10
6分钟前
一路微笑完成签到,获得积分10
6分钟前
6分钟前
7分钟前
研友_nxw2xL完成签到,获得积分10
7分钟前
muriel完成签到,获得积分10
7分钟前
科研通AI2S应助吴彦祖采纳,获得10
7分钟前
机灵自中发布了新的文献求助10
7分钟前
机灵自中完成签到,获得积分10
8分钟前
8分钟前
ZXX关闭了ZXX文献求助
8分钟前
会笑的蜗牛完成签到 ,获得积分10
9分钟前
9分钟前
mf2002mf完成签到 ,获得积分10
9分钟前
小巧的怜晴完成签到 ,获得积分10
9分钟前
努力努力再努力完成签到,获得积分10
9分钟前
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041977
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505260
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887