1.2 Racing Down the Slopes of Moore’s Law

法学 计算机科学 政治学
作者
Bram Nauta
标识
DOI:10.1109/isscc49657.2024.10454417
摘要

Since its inception, Moore's Law has been the driving force for IC design. Although during the first decade, "everything" seemed to be better, however, we lost the scaling of processor clock speed and RF transistor speed, and now it looks as if power efficiency of digital gates will stall. What remains is scaling in transistor count and cost-per-function, thanks to 3D integration.Thus, this is an excellent moment to reconsider how we design for analog and digital signal processing. The higher the required signal-to-noise ratio (SNR), the more power-efficient digital signal processing is compared to analog. Pure analog processing remains more efficient only for $\sim 30 \mathrm{~dB}$ SNR or less. In the case of digital processing, the conversion from analog to digital should therefore be made as early in the signal chain as possible. Thanks to the figure-of-merit race, analog-to-digital converters (ADCs) have experienced a tremendous win in power efficiency. However, these ADCs require a large input voltage swing while the input signals to be converted, from an antenna or sensor interface, are usually much smaller. Therefore, RF and analog front-ends are needed, which consume much more power than the ADCs to be driven.Let us re-think these analog front-ends. Can we still efficiently design these front-ends in future CMOS? Do we need so much linear amplification? Do we need active linear circuits at all? Can we not use "digital" components to replace the analog front-ends and ADCs?This paper aims to look at digital and analog processing trends from technology and design fundamentals points of view. We will first zoom out on asymptotic trends in technology scaling and try to identify future design opportunities and challenges. For circuit design, fundamental limits linking power, speed, and accuracy will be reviewed to gain insight into the implications of how we design circuits the way we currently do. This paper aims to create awareness and gives a new vision of designing analog circuits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shelly发布了新的文献求助10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
meibeiwu发布了新的文献求助10
3秒前
范范范发布了新的文献求助10
3秒前
ding应助sunshine采纳,获得10
4秒前
嘿嘿发布了新的文献求助10
4秒前
上官若男应助clear采纳,获得10
5秒前
rui发布了新的文献求助10
5秒前
6秒前
CCC完成签到,获得积分10
6秒前
浮游应助David采纳,获得10
6秒前
研友_VZG7GZ应助David采纳,获得10
6秒前
芋泥奶酪完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
mao发布了新的文献求助10
7秒前
FadeSv发布了新的文献求助10
7秒前
7秒前
hzs完成签到,获得积分10
7秒前
7秒前
孙元应助111采纳,获得10
8秒前
沙库巴曲发布了新的文献求助10
8秒前
机智发布了新的文献求助10
8秒前
wx完成签到,获得积分10
8秒前
锦鲤发布了新的文献求助10
8秒前
希希发布了新的文献求助10
9秒前
9秒前
kyt完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
张远最帅发布了新的文献求助10
11秒前
Repro完成签到 ,获得积分10
11秒前
12秒前
zzz发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049