1.2 Racing Down the Slopes of Moore’s Law

法学 计算机科学 政治学
作者
Bram Nauta
标识
DOI:10.1109/isscc49657.2024.10454417
摘要

Since its inception, Moore's Law has been the driving force for IC design. Although during the first decade, "everything" seemed to be better, however, we lost the scaling of processor clock speed and RF transistor speed, and now it looks as if power efficiency of digital gates will stall. What remains is scaling in transistor count and cost-per-function, thanks to 3D integration.Thus, this is an excellent moment to reconsider how we design for analog and digital signal processing. The higher the required signal-to-noise ratio (SNR), the more power-efficient digital signal processing is compared to analog. Pure analog processing remains more efficient only for $\sim 30 \mathrm{~dB}$ SNR or less. In the case of digital processing, the conversion from analog to digital should therefore be made as early in the signal chain as possible. Thanks to the figure-of-merit race, analog-to-digital converters (ADCs) have experienced a tremendous win in power efficiency. However, these ADCs require a large input voltage swing while the input signals to be converted, from an antenna or sensor interface, are usually much smaller. Therefore, RF and analog front-ends are needed, which consume much more power than the ADCs to be driven.Let us re-think these analog front-ends. Can we still efficiently design these front-ends in future CMOS? Do we need so much linear amplification? Do we need active linear circuits at all? Can we not use "digital" components to replace the analog front-ends and ADCs?This paper aims to look at digital and analog processing trends from technology and design fundamentals points of view. We will first zoom out on asymptotic trends in technology scaling and try to identify future design opportunities and challenges. For circuit design, fundamental limits linking power, speed, and accuracy will be reviewed to gain insight into the implications of how we design circuits the way we currently do. This paper aims to create awareness and gives a new vision of designing analog circuits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
xmjy完成签到,获得积分20
1秒前
charint应助陈圈圈采纳,获得10
2秒前
科研通AI6应助Lynn2022采纳,获得10
3秒前
3秒前
4秒前
5秒前
5秒前
xmjy发布了新的文献求助10
6秒前
超级的鞅完成签到,获得积分10
6秒前
明亮西牛发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
andrele发布了新的文献求助10
11秒前
咖啡续命发布了新的文献求助10
11秒前
12秒前
英俊的铭应助咩咩采纳,获得10
13秒前
浪客剑心发布了新的文献求助10
13秒前
kk发布了新的文献求助10
14秒前
丘比特应助小言采纳,获得10
14秒前
栀染发布了新的文献求助20
14秒前
个性小海豚完成签到,获得积分10
15秒前
15秒前
ding应助淡淡夕阳采纳,获得10
16秒前
SciGPT应助Hope采纳,获得10
16秒前
17秒前
wuwu发布了新的文献求助10
18秒前
义气千风完成签到,获得积分10
19秒前
jieni发布了新的文献求助10
20秒前
21秒前
传奇3应助能干砖家采纳,获得10
21秒前
星辰完成签到,获得积分10
22秒前
Lida完成签到,获得积分10
23秒前
占博涛发布了新的文献求助10
23秒前
情怀应助miqilin采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792