1.2 Racing Down the Slopes of Moore’s Law

法学 计算机科学 政治学
作者
Bram Nauta
标识
DOI:10.1109/isscc49657.2024.10454417
摘要

Since its inception, Moore's Law has been the driving force for IC design. Although during the first decade, "everything" seemed to be better, however, we lost the scaling of processor clock speed and RF transistor speed, and now it looks as if power efficiency of digital gates will stall. What remains is scaling in transistor count and cost-per-function, thanks to 3D integration.Thus, this is an excellent moment to reconsider how we design for analog and digital signal processing. The higher the required signal-to-noise ratio (SNR), the more power-efficient digital signal processing is compared to analog. Pure analog processing remains more efficient only for $\sim 30 \mathrm{~dB}$ SNR or less. In the case of digital processing, the conversion from analog to digital should therefore be made as early in the signal chain as possible. Thanks to the figure-of-merit race, analog-to-digital converters (ADCs) have experienced a tremendous win in power efficiency. However, these ADCs require a large input voltage swing while the input signals to be converted, from an antenna or sensor interface, are usually much smaller. Therefore, RF and analog front-ends are needed, which consume much more power than the ADCs to be driven.Let us re-think these analog front-ends. Can we still efficiently design these front-ends in future CMOS? Do we need so much linear amplification? Do we need active linear circuits at all? Can we not use "digital" components to replace the analog front-ends and ADCs?This paper aims to look at digital and analog processing trends from technology and design fundamentals points of view. We will first zoom out on asymptotic trends in technology scaling and try to identify future design opportunities and challenges. For circuit design, fundamental limits linking power, speed, and accuracy will be reviewed to gain insight into the implications of how we design circuits the way we currently do. This paper aims to create awareness and gives a new vision of designing analog circuits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dida完成签到,获得积分10
1秒前
2秒前
阳佟念真完成签到,获得积分10
3秒前
Jaylene完成签到 ,获得积分10
3秒前
5秒前
Zy完成签到 ,获得积分10
5秒前
充电宝应助哈哈采纳,获得10
5秒前
成就的纸飞机关注了科研通微信公众号
6秒前
外向的汉堡完成签到,获得积分10
7秒前
ZJY发布了新的文献求助10
7秒前
冷酷以晴完成签到,获得积分10
7秒前
wuhan完成签到,获得积分10
7秒前
洁净的易巧完成签到,获得积分10
8秒前
科目三应助dxftx采纳,获得10
8秒前
单纯曼冬发布了新的文献求助10
8秒前
8秒前
9秒前
百甲完成签到,获得积分10
9秒前
9秒前
zz关闭了zz文献求助
9秒前
11秒前
missinged完成签到,获得积分10
12秒前
李慧敏完成签到,获得积分10
13秒前
13秒前
13秒前
母yannan123发布了新的文献求助10
14秒前
10711发布了新的文献求助10
14秒前
14秒前
14秒前
木心应助子寒采纳,获得20
15秒前
allezallez完成签到,获得积分10
16秒前
慕青应助hmeng014121采纳,获得30
16秒前
17秒前
Jaylene发布了新的文献求助30
17秒前
tyzz完成签到,获得积分10
17秒前
19秒前
20秒前
晴烟ZYM发布了新的文献求助30
21秒前
头头完成签到,获得积分10
21秒前
科滴滴完成签到 ,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992495
求助须知:如何正确求助?哪些是违规求助? 3533431
关于积分的说明 11262369
捐赠科研通 3273025
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882800
科研通“疑难数据库(出版商)”最低求助积分说明 809496