Survey of continuous deep learning methods and techniques used for incremental learning

计算机科学 人工智能 渐进式学习 深度学习 机器学习
作者
Justin Leo,Jugal Kalita
出处
期刊:Neurocomputing [Elsevier]
卷期号:582: 127545-127545 被引量:2
标识
DOI:10.1016/j.neucom.2024.127545
摘要

Neural networks and deep learning algorithms are designed to function similarly to biological synaptic structures. However, classical deep learning algorithms fail to fully capture the need for continuous learning; this has led to the advent of incremental learning. Incremental learning adds new challenges that are handled differently by modern state-of-the-art approaches. Some of these include: utilization of network memory as additional knowledge increases the size of the network, open-set recognition to be able to identify unrecognized information, and efficient knowledge distillation as most incremental learning algorithms are prone to catastrophic forgetting of previously learned knowledge. Recent advancements achieve incremental learning through a multitude of methods. Most methods are characterized by augmenting the normal algorithm of neural network training by both directly modifying the neural network structure and by adding additional learning steps. This paper analyzes and provides a comprehensive survey of existing methods and various techniques used for incremental learning. A novel categorization of the methods is also introduced based on recent trends of the state-of-the-art solutions. The study focuses on methods that provide incremental learning success as well as discusses emerging patterns in new research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的妖妖完成签到,获得积分10
刚刚
刚刚
海盐气泡水完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助AAA采纳,获得10
2秒前
lym2021完成签到,获得积分10
2秒前
2秒前
2秒前
Zxyvv发布了新的文献求助10
3秒前
史塔克完成签到,获得积分10
4秒前
wblydz发布了新的文献求助10
4秒前
xx616发布了新的文献求助10
4秒前
K1481691发布了新的文献求助10
5秒前
三盒半熟芝士完成签到,获得积分10
7秒前
wangyue发布了新的文献求助20
7秒前
Yamila发布了新的文献求助30
7秒前
愉快的真完成签到,获得积分0
8秒前
9秒前
9秒前
从容雨筠完成签到,获得积分10
9秒前
10秒前
深情安青应助lis57采纳,获得10
10秒前
10秒前
Zxyvv完成签到,获得积分10
10秒前
11秒前
魔幻哈密瓜完成签到,获得积分10
11秒前
h1352216完成签到,获得积分10
12秒前
boboking完成签到,获得积分10
12秒前
Yamila完成签到,获得积分10
12秒前
hehehe完成签到,获得积分10
12秒前
n0rthstar发布了新的文献求助10
13秒前
JamesPei应助wblydz采纳,获得10
14秒前
哈哈哈发布了新的文献求助10
14秒前
小董不懂发布了新的文献求助10
14秒前
zuzu发布了新的文献求助10
15秒前
lyre发布了新的文献求助10
15秒前
sugar完成签到,获得积分10
16秒前
一一完成签到,获得积分10
17秒前
好困应助Guoqiang采纳,获得30
17秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251