Weyl nodal loop semimetals and tunable quantum anomalous Hall states in two-dimensional ferromagnetic cerium monohalides

铁磁性 凝聚态物理 自旋电子学 物理 拓扑(电路) 材料科学 数学 组合数学
作者
Shu-Zong Li,Jun‐Shan Si,Zhixiong Yang,Wei‐Bing Zhang
出处
期刊:Physical review 卷期号:109 (11) 被引量:1
标识
DOI:10.1103/physrevb.109.115418
摘要

Quantum anomalous Hall (QAH) effect with dissipationless edge channels offers innovative insight for designing the next-generation low-power electronic devices. Based on first-principles calculations and the tight-binding (TB) model, we predict rich QAH states with a tunable Chern number in single-layer ferromagnetic cerium monohalides $\mathrm{Ce}X$ ($X$ = Cl, Br, I). These stable ferromagnetic single-layer materials have isotropic magnetocrystalline anisotropy in the $x\text{\ensuremath{-}}y$ plane, which favors the adjustment of the topological state with an external magnetic field. A distinct Weyl nodal loop exists in the band structure of the $\mathrm{Ce}X$ single layers without spin-orbit coupling (SOC). When SOC is included and all mirror symmetries are broken, QAH state can be realized. Intriguingly, QAH states with varying Chern number ($C=\ifmmode\pm\else\textpm\fi{}1$), two-dimensional Weyl semimetals and band gap periodically manifest as the magnetization direction rotates in the $x\text{\ensuremath{-}}y$ plane. Furthermore, A TB model based on Slater-Koster framework is constructed to explain the origin of nontrivial band structure in $\mathrm{Ce}X$ single layers. The $\mathrm{Ce}X$ single layers exhibit remarkable topological states, providing an excellent platform for exploring low-power spintronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然完成签到,获得积分10
1秒前
明理小土豆完成签到,获得积分10
1秒前
刘国建郭菱香完成签到,获得积分10
1秒前
嘤嘤嘤完成签到,获得积分10
1秒前
九川应助粱自中采纳,获得10
1秒前
无辜之卉完成签到,获得积分10
2秒前
无花果应助Island采纳,获得10
2秒前
2秒前
SHDeathlock发布了新的文献求助200
3秒前
Owen应助醒醒采纳,获得10
3秒前
无心的代桃完成签到,获得积分10
4秒前
追寻代真完成签到,获得积分10
4秒前
晓兴兴完成签到,获得积分10
4秒前
leon发布了新的文献求助10
5秒前
洽洽瓜子shine完成签到,获得积分10
5秒前
简单的大白菜真实的钥匙完成签到,获得积分10
6秒前
7秒前
一独白完成签到,获得积分10
8秒前
在水一方应助坚强的樱采纳,获得10
8秒前
慕青应助尼亚吉拉采纳,获得10
9秒前
快乐小白菜应助甜酱采纳,获得10
9秒前
9秒前
qq应助毛慢慢采纳,获得10
10秒前
10秒前
科研通AI5应助吴岳采纳,获得10
10秒前
天天快乐应助ufuon采纳,获得10
11秒前
科研通AI5应助一独白采纳,获得10
12秒前
hearts_j完成签到,获得积分10
12秒前
FashionBoy应助yasan采纳,获得10
12秒前
安琪琪完成签到,获得积分10
13秒前
13秒前
端庄千琴完成签到,获得积分10
13秒前
gaogao完成签到,获得积分10
13秒前
菲菲公主完成签到,获得积分10
14秒前
14秒前
14秒前
英姑应助柒八染采纳,获得10
15秒前
退堂鼓发布了新的文献求助10
15秒前
党弛完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762