Physics-constrained attack against convolution-based human motion prediction

卷积(计算机科学) 运动(物理) 物理 统计物理学 计算机科学 人工智能 经典力学 人工神经网络
作者
Cuiping Duan,Zhicheng Zhang,Xiaoli Liu,Yonghao Dang,Jianqin Yin
出处
期刊:Neurocomputing [Elsevier]
卷期号:575: 127272-127272
标识
DOI:10.1016/j.neucom.2024.127272
摘要

Human motion prediction has achieved a brilliant performance with the help of convolution-based neural networks. However, currently, there is no work evaluating the potential risk in human motion prediction when facing adversarial attacks. The adversarial attack will encounter problems against human motion prediction in naturalness and data scale. To solve the problems above, we propose a new adversarial attack method that generates the worst-case perturbation by maximizing the human motion predictor's prediction error with physical constraints. Specifically, we introduce a novel adaptable scheme that facilitates the attack to suit the scale of the target pose and two physical constraints to enhance the naturalness of the adversarial example. The evaluating experiments on three datasets show that the prediction errors of all target models are enlarged significantly, which means current convolution-based human motion prediction models are vulnerable to the proposed attack. Based on the experimental results, we provide insights on how to enhance the adversarial robustness of the human motion predictor and how to improve the adversarial attack against human motion prediction. The code is available at https://github.com/ChengxuDuan/advHMP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
桐桐应助暴躁的信封采纳,获得10
3秒前
田様应助lemon采纳,获得10
4秒前
4秒前
5秒前
远了个方发布了新的文献求助10
7秒前
远了个方发布了新的文献求助10
7秒前
远了个方发布了新的文献求助10
7秒前
远了个方发布了新的文献求助10
7秒前
Xie完成签到,获得积分10
9秒前
CipherSage应助郑石采纳,获得10
10秒前
红泥小火炉完成签到,获得积分10
10秒前
orixero应助花花采纳,获得10
13秒前
orixero应助米呀呀呀呀呀呀采纳,获得10
14秒前
晚灯君完成签到 ,获得积分10
14秒前
15秒前
Jindyla完成签到,获得积分10
16秒前
景辣条完成签到,获得积分10
17秒前
17秒前
烟花应助zy采纳,获得10
18秒前
小贾完成签到,获得积分10
19秒前
顺心绮兰完成签到,获得积分10
21秒前
21秒前
ccm应助顺心的卿采纳,获得10
21秒前
lemon发布了新的文献求助10
23秒前
23秒前
煤炭不甜应助咩咩采纳,获得50
24秒前
完美世界应助Wang采纳,获得10
25秒前
一一完成签到,获得积分10
25秒前
27秒前
29秒前
华仔应助满眼星辰采纳,获得10
29秒前
VVV完成签到 ,获得积分10
29秒前
嘻嘻哈哈完成签到 ,获得积分10
29秒前
搞怪南风完成签到,获得积分10
30秒前
奋斗魂幽完成签到 ,获得积分0
33秒前
ljlcyx发布了新的文献求助30
34秒前
xpx完成签到,获得积分20
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269474
求助须知:如何正确求助?哪些是违规求助? 2909017
关于积分的说明 8347691
捐赠科研通 2579253
什么是DOI,文献DOI怎么找? 1402733
科研通“疑难数据库(出版商)”最低求助积分说明 655478
邀请新用户注册赠送积分活动 634763