Physics-constrained attack against convolution-based human motion prediction

卷积(计算机科学) 运动(物理) 物理 统计物理学 计算机科学 人工智能 经典力学 人工神经网络
作者
Cuiping Duan,Zhicheng Zhang,Xiaoli Liu,Yonghao Dang,Jianqin Yin
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:575: 127272-127272
标识
DOI:10.1016/j.neucom.2024.127272
摘要

Human motion prediction has achieved a brilliant performance with the help of convolution-based neural networks. However, currently, there is no work evaluating the potential risk in human motion prediction when facing adversarial attacks. The adversarial attack will encounter problems against human motion prediction in naturalness and data scale. To solve the problems above, we propose a new adversarial attack method that generates the worst-case perturbation by maximizing the human motion predictor's prediction error with physical constraints. Specifically, we introduce a novel adaptable scheme that facilitates the attack to suit the scale of the target pose and two physical constraints to enhance the naturalness of the adversarial example. The evaluating experiments on three datasets show that the prediction errors of all target models are enlarged significantly, which means current convolution-based human motion prediction models are vulnerable to the proposed attack. Based on the experimental results, we provide insights on how to enhance the adversarial robustness of the human motion predictor and how to improve the adversarial attack against human motion prediction. The code is available at https://github.com/ChengxuDuan/advHMP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情科研狗完成签到,获得积分10
刚刚
刚刚
maoaq完成签到 ,获得积分10
1秒前
1秒前
1秒前
Z6745完成签到,获得积分10
1秒前
2秒前
欢呼盛夏完成签到,获得积分10
2秒前
2秒前
畅快盼望发布了新的文献求助10
2秒前
好好发布了新的文献求助10
2秒前
2秒前
pierolahm发布了新的文献求助20
2秒前
茶茶完成签到,获得积分10
2秒前
弱水举报莉莉斯求助涉嫌违规
2秒前
细腻的若山关注了科研通微信公众号
3秒前
无花果应助哈哈采纳,获得10
3秒前
3秒前
polysaccharide完成签到,获得积分10
3秒前
七七发布了新的文献求助10
3秒前
4秒前
4秒前
何永森发布了新的文献求助10
5秒前
LL发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
6秒前
7秒前
7秒前
7秒前
科研通AI6应助呼呼呼采纳,获得10
7秒前
泉竹晓筱发布了新的文献求助10
8秒前
谨慎妙菡完成签到,获得积分10
8秒前
8秒前
8秒前
李帆完成签到,获得积分10
9秒前
zhu完成签到,获得积分10
9秒前
RLV完成签到,获得积分10
9秒前
xygg发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262045
求助须知:如何正确求助?哪些是违规求助? 4423178
关于积分的说明 13768730
捐赠科研通 4297627
什么是DOI,文献DOI怎么找? 2358073
邀请新用户注册赠送积分活动 1354468
关于科研通互助平台的介绍 1315580