Automatedly identify dryland threatened species at large scale by using deep learning

濒危物种 植被(病理学) 生物多样性 环境科学 地理 遥感 生态学 生物 栖息地 医学 病理
作者
Haolin Wang,Qi Liu,Dongwei GUI,Yunfei Liu,Xinlong Feng,Kai Lin,Jianping Zhao,Guanghui Wei
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:917: 170375-170375 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.170375
摘要

Dryland biodiversity is decreasing at an alarming rate. Advanced intelligent tools are urgently needed to rapidly, automatedly, and precisely detect dryland threatened species on a large scale for biological conservation. Here, we explored the performance of three deep convolutional neural networks (Deeplabv3+, Unet, and Pspnet models) on the intelligent recognition of rare species based on high-resolution (0.3 m) satellite images taken by an unmanned aerial vehicle (UAV). We focused on a threatened species, Populus euphratica, in the Tarim River Basin (China), where there has been a severe population decline in the 1970s and restoration has been carried out since 2000. The testing results showed that Unet outperforms Deeplabv3+ and Pspnet when the training samples are lower, while Deeplabv3+ performs best as the dataset increases. Overall, when training samples are 80, Deeplabv3+ had the best overall performance for Populus euphratica identification, with mean pixel accuracy (MPA) between 87.31 % and 90.2 %, which, on average is 3.74 % and 11.29 % higher than Unet and Pspnet, respectively. Deeplabv3+ can accurately detect the boundaries of Populus euphratica even in areas of dense vegetation, with lower identification uncertainty for each pixel than other models. This study developed a UAV imagery-based identification framework using deep learning with high resolution in large-scale regions. This approach can accurately capture the variation in dryland threatened species, especially those in inaccessible areas, thereby fostering rapid and efficient conservation actions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳书包完成签到,获得积分10
1秒前
3秒前
李大海发布了新的文献求助10
4秒前
筱小筱完成签到,获得积分10
4秒前
4秒前
墨尘完成签到,获得积分20
4秒前
Lion完成签到,获得积分10
5秒前
6秒前
明理芷云完成签到,获得积分10
6秒前
7秒前
7秒前
月光发布了新的文献求助10
8秒前
As发布了新的文献求助10
8秒前
芒果味猕猴桃完成签到,获得积分10
8秒前
所所应助苗苗采纳,获得10
8秒前
10秒前
科研通AI2S应助浮生采纳,获得10
10秒前
zy123完成签到,获得积分10
10秒前
郭大哥完成签到 ,获得积分10
11秒前
岁月轮回发布了新的文献求助20
12秒前
13秒前
13秒前
14秒前
hh0发布了新的文献求助10
16秒前
谷子完成签到 ,获得积分10
16秒前
panda完成签到,获得积分10
18秒前
19秒前
Niuma发布了新的文献求助10
19秒前
20秒前
20秒前
jjy完成签到,获得积分10
21秒前
22秒前
22秒前
洛洛关注了科研通微信公众号
23秒前
25秒前
睡懒觉发布了新的文献求助10
25秒前
26秒前
33完成签到,获得积分10
26秒前
28秒前
可爱的函函应助岁月轮回采纳,获得10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242090
求助须知:如何正确求助?哪些是违规求助? 2886524
关于积分的说明 8243543
捐赠科研通 2555030
什么是DOI,文献DOI怎么找? 1383250
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625463