濒危物种
植被(病理学)
生物多样性
环境科学
地理
遥感
生态学
生物
栖息地
医学
病理
作者
Haolin Wang,Qi Liu,Dongwei GUI,Yunfei Liu,Xinlong Feng,Kai Lin,Jianping Zhao,Guanghui Wei
标识
DOI:10.1016/j.scitotenv.2024.170375
摘要
Dryland biodiversity is decreasing at an alarming rate. Advanced intelligent tools are urgently needed to rapidly, automatedly, and precisely detect dryland threatened species on a large scale for biological conservation. Here, we explored the performance of three deep convolutional neural networks (Deeplabv3+, Unet, and Pspnet models) on the intelligent recognition of rare species based on high-resolution (0.3 m) satellite images taken by an unmanned aerial vehicle (UAV). We focused on a threatened species, Populus euphratica, in the Tarim River Basin (China), where there has been a severe population decline in the 1970s and restoration has been carried out since 2000. The testing results showed that Unet outperforms Deeplabv3+ and Pspnet when the training samples are lower, while Deeplabv3+ performs best as the dataset increases. Overall, when training samples are 80, Deeplabv3+ had the best overall performance for Populus euphratica identification, with mean pixel accuracy (MPA) between 87.31 % and 90.2 %, which, on average is 3.74 % and 11.29 % higher than Unet and Pspnet, respectively. Deeplabv3+ can accurately detect the boundaries of Populus euphratica even in areas of dense vegetation, with lower identification uncertainty for each pixel than other models. This study developed a UAV imagery-based identification framework using deep learning with high resolution in large-scale regions. This approach can accurately capture the variation in dryland threatened species, especially those in inaccessible areas, thereby fostering rapid and efficient conservation actions.
科研通智能强力驱动
Strongly Powered by AbleSci AI