Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data

光伏系统 适应性 期限(时间) 可再生能源 时间序列 电力系统 功率(物理) 数据挖掘 计算机科学 人工智能 机器学习 工程类 电气工程 物理 生物 量子力学 生态学
作者
Zehuan Hu,Yuan Gao,Siyu JI,Masayuki MAE,Taiji Imaizumi
出处
期刊:Applied Energy [Elsevier]
卷期号:359: 122709-122709 被引量:154
标识
DOI:10.1016/j.apenergy.2024.122709
摘要

Accurate predictions of photovoltaic power generation (PV power) are essential for the integration of renewable energy into grids, markets, and building energy management systems. PV power is highly susceptible to weather conditions. Therefore, as weather forecast accuracy improves, it has become increasingly important issue to effectively utilize weather forecast data to enhance prediction accuracy. In this study, an improved model that combines Long Short-Term Memory (LSTM) and self-attention mechanisms is proposed. Proposed model captures the time features through the LSTM network and the correlations among multivariate time series through the self-attention mechanism. Additionally, methods to efficiently integrate historical and forecast data into various time-series forecasting models are also proposed. To verify the effectiveness of the proposed method and the performance of the proposed model, an actual PV power data of a building in Japan is used for various types of experiments. The results demonstrate that the proposed method effectively leverages weather forecast data and enhances the prediction performance of all models, the coefficient of determination (R2) are improved 15.8% for LSTM model, and 26.4% for proposed model. Whether for short-term or long-term predictions, proposed model consistently provides superior accuracy, practicality, and adaptability across all output sequence lengths. Compared to the basic LSTM model, R2 on short-term and long-term forecasting increased by 3.9% and 22.5%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助小D爱科研采纳,获得30
1秒前
文静慕青发布了新的文献求助10
2秒前
2秒前
GH发布了新的文献求助10
3秒前
阿木发布了新的文献求助10
3秒前
赵生发布了新的文献求助10
4秒前
4秒前
彭于晏应助Ushuaia采纳,获得10
5秒前
超帅的发布了新的文献求助10
5秒前
5秒前
6秒前
lemon 1118完成签到,获得积分10
6秒前
6秒前
6秒前
保持理智完成签到,获得积分10
9秒前
研友_VZG7GZ应助健壮的悟空采纳,获得10
9秒前
YC发布了新的文献求助10
9秒前
10秒前
ghhhh6完成签到 ,获得积分10
10秒前
Angel应助猪猪hero采纳,获得10
11秒前
Zz完成签到 ,获得积分10
11秒前
lemon 1118发布了新的文献求助10
12秒前
13秒前
wanci应助满意的涵菱采纳,获得10
14秒前
苏诗兰发布了新的文献求助10
14秒前
武淑晴完成签到,获得积分10
14秒前
釦沐完成签到,获得积分10
14秒前
orixero应助Maestro_S采纳,获得10
15秒前
星辰大海应助可靠诗筠采纳,获得10
16秒前
AneyWinter66应助猪猪hero采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
万能的悲剧完成签到 ,获得积分10
17秒前
18秒前
18秒前
虚拟的落雁完成签到,获得积分10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735237
求助须知:如何正确求助?哪些是违规求助? 5359154
关于积分的说明 15328898
捐赠科研通 4879502
什么是DOI,文献DOI怎么找? 2622007
邀请新用户注册赠送积分活动 1571188
关于科研通互助平台的介绍 1527971