Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data

光伏系统 适应性 期限(时间) 可再生能源 时间序列 电力系统 功率(物理) 数据挖掘 计算机科学 人工智能 机器学习 工程类 电气工程 物理 生物 量子力学 生态学
作者
Zehuan Hu,Yuan Gao,Siyu JI,Masayuki MAE,Taiji Imaizumi
出处
期刊:Applied Energy [Elsevier BV]
卷期号:359: 122709-122709 被引量:105
标识
DOI:10.1016/j.apenergy.2024.122709
摘要

Accurate predictions of photovoltaic power generation (PV power) are essential for the integration of renewable energy into grids, markets, and building energy management systems. PV power is highly susceptible to weather conditions. Therefore, as weather forecast accuracy improves, it has become increasingly important issue to effectively utilize weather forecast data to enhance prediction accuracy. In this study, an improved model that combines Long Short-Term Memory (LSTM) and self-attention mechanisms is proposed. Proposed model captures the time features through the LSTM network and the correlations among multivariate time series through the self-attention mechanism. Additionally, methods to efficiently integrate historical and forecast data into various time-series forecasting models are also proposed. To verify the effectiveness of the proposed method and the performance of the proposed model, an actual PV power data of a building in Japan is used for various types of experiments. The results demonstrate that the proposed method effectively leverages weather forecast data and enhances the prediction performance of all models, the coefficient of determination (R2) are improved 15.8% for LSTM model, and 26.4% for proposed model. Whether for short-term or long-term predictions, proposed model consistently provides superior accuracy, practicality, and adaptability across all output sequence lengths. Compared to the basic LSTM model, R2 on short-term and long-term forecasting increased by 3.9% and 22.5%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
刚刚
刚刚
xhsz1111发布了新的文献求助10
刚刚
寂灭之时发布了新的文献求助10
1秒前
Yeeeh关注了科研通微信公众号
1秒前
堪冷之发布了新的文献求助10
1秒前
2秒前
KYG科研发布了新的文献求助10
2秒前
打打应助威武的凡双采纳,获得10
2秒前
2秒前
滞光发布了新的文献求助10
2秒前
林爷完成签到,获得积分10
3秒前
sophia1211完成签到,获得积分10
3秒前
怡然自得完成签到,获得积分10
3秒前
故里完成签到,获得积分10
4秒前
李健的小迷弟应助三余采纳,获得10
4秒前
Zyl完成签到 ,获得积分10
5秒前
6秒前
HOLDMEN发布了新的文献求助10
6秒前
7秒前
zhazha完成签到,获得积分10
7秒前
tang完成签到,获得积分10
8秒前
闪闪发布了新的文献求助10
8秒前
8秒前
KYG科研完成签到,获得积分10
9秒前
kimky发布了新的文献求助10
9秒前
要减肥的胖虎完成签到,获得积分10
10秒前
炒米粉完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
浮游应助玟翾采纳,获得10
10秒前
临风发布了新的文献求助30
11秒前
uu完成签到,获得积分20
11秒前
shuang发布了新的文献求助10
11秒前
爱咋咋地发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
boyaqin发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088254
求助须知:如何正确求助?哪些是违规求助? 4303219
关于积分的说明 13410735
捐赠科研通 4129025
什么是DOI,文献DOI怎么找? 2261095
邀请新用户注册赠送积分活动 1265234
关于科研通互助平台的介绍 1199686