Contrastive self-supervised graph convolutional network for detecting the relationship among lncRNAs, miRNAs, and diseases

计算机科学 图形 生物学数据 机器学习 卷积神经网络 人工智能 利用 相似性(几何) 嵌入 理论计算机科学 数据挖掘 生物信息学 生物 计算机安全 图像(数学)
作者
Nan Sheng,Lan Huang,Yan Wang,Ling Gao,Huiyan Sun,Xuping Xie
标识
DOI:10.1109/bibm58861.2023.10385789
摘要

Inferring potential relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and diseases play a crucial role in investigation of disease aetiology and pathogenesis. Due to the high cost of laboratory experiments, there is a practical requirement to develop appropriate computational methods that promise to accelerate the experimental screening process for potential lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), and lncRNA-miRNA interactions (LMIs). However, most existing methods are applied to predict LDAs, MDAs, and LMIs in specific domains, neglecting the important benefits of integrating multiple sources data and limiting the ability of transferring models to other tasks. Furthermore, with the high sparsity of LDA, MDA, and LMI data, it is difficult for many computational models to exploit enough knowledge to learn the comprehensive patterns of node embedding. In this study, inspired by the recent success of graph contrastive learning, we develop a Contrastive Self-supervised Graph convolutional network to identify potential LDAs, MDAs, and LMIs (called CSGLMD). CSGLMD combines supervised learning and self-supervised learning to fully capture node features. Specifically, CSGLMD primarily leverages the rich association and similarity relationships among lncRNA, miRNA, and disease to construct a lncRNA-miRNA-disease heterogeneous graph (LMDHG) that contains three types of biological entities. It can effectively embed multi-source biological data and assist the model extension to other prediction tasks. In addition, we consider applying a label instantiation mechanism to make the LMDHG better adapt graph neural network structures and control the strength of similarity relationships between the same biological entities. Secondly, CSGLMD implements graph convolutional network (GCN) as encoder to extract node embedding features from the LMDHG, and utilizes a multi-relational modelling decoder to predict LDAs, MDAs, or LMIs. Finally, we designed a contrastive self-supervised learning task that guides the learning of node embeddings without relying on labels, and acts as a regularize in a multi-task learning paradigm to enhance the generalization ability of the model. Extensive results on two datasets (from the old and new versions of the database, respectively) show that CSGLMD significantly outperforms 12 state-of-the-art methods (5 LDA prediction and 7 MDA prediction) in predicting disease-associated lncRNAs and miRNAs. Case studies on old and new datasets can further demonstrate the capability of CSGLMD to discover disease-related new candidate lncRNAs and miRNAs. The source data and code for the proposed model are publicly available on https://github.com/sheng-n/CSGLMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟冬发布了新的文献求助10
刚刚
刚刚
CodeCraft应助naturehome采纳,获得10
2秒前
wwww发布了新的文献求助20
2秒前
wang完成签到,获得积分10
2秒前
小赵发布了新的文献求助10
4秒前
5秒前
Lucas应助shdhdu采纳,获得10
6秒前
6秒前
小草莓完成签到,获得积分20
6秒前
传奇3应助梦想or现实采纳,获得10
6秒前
JS姜硕完成签到,获得积分20
7秒前
Aurora完成签到,获得积分10
7秒前
852应助jerry1213采纳,获得10
9秒前
10秒前
天真的皓轩完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
JS姜硕发布了新的文献求助10
12秒前
12秒前
褚香旋发布了新的文献求助10
13秒前
烟花应助听话当小当采纳,获得10
14秒前
沉默的谷秋完成签到,获得积分10
15秒前
DingYL发布了新的文献求助10
15秒前
16秒前
17秒前
kyJYbs发布了新的文献求助10
18秒前
mmol发布了新的文献求助10
20秒前
zhangxr发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
且从容完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
22秒前
22秒前
22秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542