亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contrastive self-supervised graph convolutional network for detecting the relationship among lncRNAs, miRNAs, and diseases

计算机科学 图形 生物学数据 机器学习 卷积神经网络 人工智能 利用 相似性(几何) 嵌入 理论计算机科学 数据挖掘 生物信息学 生物 计算机安全 图像(数学)
作者
Nan Sheng,Lan Huang,Yan Wang,Ling Gao,Huiyan Sun,Xuping Xie
标识
DOI:10.1109/bibm58861.2023.10385789
摘要

Inferring potential relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and diseases play a crucial role in investigation of disease aetiology and pathogenesis. Due to the high cost of laboratory experiments, there is a practical requirement to develop appropriate computational methods that promise to accelerate the experimental screening process for potential lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), and lncRNA-miRNA interactions (LMIs). However, most existing methods are applied to predict LDAs, MDAs, and LMIs in specific domains, neglecting the important benefits of integrating multiple sources data and limiting the ability of transferring models to other tasks. Furthermore, with the high sparsity of LDA, MDA, and LMI data, it is difficult for many computational models to exploit enough knowledge to learn the comprehensive patterns of node embedding. In this study, inspired by the recent success of graph contrastive learning, we develop a Contrastive Self-supervised Graph convolutional network to identify potential LDAs, MDAs, and LMIs (called CSGLMD). CSGLMD combines supervised learning and self-supervised learning to fully capture node features. Specifically, CSGLMD primarily leverages the rich association and similarity relationships among lncRNA, miRNA, and disease to construct a lncRNA-miRNA-disease heterogeneous graph (LMDHG) that contains three types of biological entities. It can effectively embed multi-source biological data and assist the model extension to other prediction tasks. In addition, we consider applying a label instantiation mechanism to make the LMDHG better adapt graph neural network structures and control the strength of similarity relationships between the same biological entities. Secondly, CSGLMD implements graph convolutional network (GCN) as encoder to extract node embedding features from the LMDHG, and utilizes a multi-relational modelling decoder to predict LDAs, MDAs, or LMIs. Finally, we designed a contrastive self-supervised learning task that guides the learning of node embeddings without relying on labels, and acts as a regularize in a multi-task learning paradigm to enhance the generalization ability of the model. Extensive results on two datasets (from the old and new versions of the database, respectively) show that CSGLMD significantly outperforms 12 state-of-the-art methods (5 LDA prediction and 7 MDA prediction) in predicting disease-associated lncRNAs and miRNAs. Case studies on old and new datasets can further demonstrate the capability of CSGLMD to discover disease-related new candidate lncRNAs and miRNAs. The source data and code for the proposed model are publicly available on https://github.com/sheng-n/CSGLMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰渊悬月完成签到,获得积分10
3秒前
上官若男应助liang采纳,获得10
11秒前
Ruri发布了新的文献求助10
17秒前
GongSyi完成签到 ,获得积分10
17秒前
23秒前
25秒前
StonesKing发布了新的文献求助10
26秒前
liang发布了新的文献求助10
30秒前
32秒前
hky发布了新的文献求助10
35秒前
liang完成签到,获得积分10
36秒前
39秒前
StonesKing完成签到,获得积分10
56秒前
Orange应助lf采纳,获得10
57秒前
hky完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
lf发布了新的文献求助10
1分钟前
1分钟前
1分钟前
文文课堂发布了新的文献求助10
1分钟前
秀丽松思完成签到 ,获得积分10
1分钟前
1分钟前
为神指路发布了新的文献求助10
1分钟前
1分钟前
葛力发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
555557应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
顺心蜜粉发布了新的文献求助200
2分钟前
葛力完成签到,获得积分20
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
916应助葛力采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520749
关于积分的说明 11204693
捐赠科研通 3257497
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629