Contrastive self-supervised graph convolutional network for detecting the relationship among lncRNAs, miRNAs, and diseases

计算机科学 图形 生物学数据 机器学习 卷积神经网络 人工智能 利用 相似性(几何) 嵌入 理论计算机科学 数据挖掘 生物信息学 生物 计算机安全 图像(数学)
作者
Nan Sheng,Lan Huang,Yan Wang,Ling Gao,Huiyan Sun,Xuping Xie
标识
DOI:10.1109/bibm58861.2023.10385789
摘要

Inferring potential relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and diseases play a crucial role in investigation of disease aetiology and pathogenesis. Due to the high cost of laboratory experiments, there is a practical requirement to develop appropriate computational methods that promise to accelerate the experimental screening process for potential lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), and lncRNA-miRNA interactions (LMIs). However, most existing methods are applied to predict LDAs, MDAs, and LMIs in specific domains, neglecting the important benefits of integrating multiple sources data and limiting the ability of transferring models to other tasks. Furthermore, with the high sparsity of LDA, MDA, and LMI data, it is difficult for many computational models to exploit enough knowledge to learn the comprehensive patterns of node embedding. In this study, inspired by the recent success of graph contrastive learning, we develop a Contrastive Self-supervised Graph convolutional network to identify potential LDAs, MDAs, and LMIs (called CSGLMD). CSGLMD combines supervised learning and self-supervised learning to fully capture node features. Specifically, CSGLMD primarily leverages the rich association and similarity relationships among lncRNA, miRNA, and disease to construct a lncRNA-miRNA-disease heterogeneous graph (LMDHG) that contains three types of biological entities. It can effectively embed multi-source biological data and assist the model extension to other prediction tasks. In addition, we consider applying a label instantiation mechanism to make the LMDHG better adapt graph neural network structures and control the strength of similarity relationships between the same biological entities. Secondly, CSGLMD implements graph convolutional network (GCN) as encoder to extract node embedding features from the LMDHG, and utilizes a multi-relational modelling decoder to predict LDAs, MDAs, or LMIs. Finally, we designed a contrastive self-supervised learning task that guides the learning of node embeddings without relying on labels, and acts as a regularize in a multi-task learning paradigm to enhance the generalization ability of the model. Extensive results on two datasets (from the old and new versions of the database, respectively) show that CSGLMD significantly outperforms 12 state-of-the-art methods (5 LDA prediction and 7 MDA prediction) in predicting disease-associated lncRNAs and miRNAs. Case studies on old and new datasets can further demonstrate the capability of CSGLMD to discover disease-related new candidate lncRNAs and miRNAs. The source data and code for the proposed model are publicly available on https://github.com/sheng-n/CSGLMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzw完成签到,获得积分10
3秒前
Guochunbao完成签到,获得积分10
4秒前
哈哈哈完成签到 ,获得积分10
6秒前
科研通AI5应助蒋念寒采纳,获得10
6秒前
月亮褪色了完成签到 ,获得积分20
10秒前
萱棚完成签到 ,获得积分10
10秒前
11秒前
Cao完成签到 ,获得积分10
11秒前
ENG完成签到,获得积分10
13秒前
alick完成签到,获得积分10
15秒前
刘刘完成签到,获得积分10
16秒前
Tom完成签到,获得积分10
17秒前
Villanellel发布了新的文献求助10
18秒前
程艳完成签到 ,获得积分10
19秒前
MINGHUI完成签到,获得积分10
20秒前
20秒前
子车半烟完成签到,获得积分10
20秒前
22秒前
淳于安筠完成签到,获得积分10
22秒前
雨晴完成签到,获得积分10
25秒前
jbq发布了新的文献求助10
25秒前
joshar完成签到,获得积分10
25秒前
26秒前
量子星尘发布了新的文献求助10
28秒前
blueblue完成签到,获得积分10
30秒前
落后秋烟完成签到,获得积分10
32秒前
大橙子发布了新的文献求助10
33秒前
LMY完成签到 ,获得积分10
33秒前
Betty完成签到 ,获得积分10
33秒前
NexusExplorer应助jbq采纳,获得10
34秒前
渔渔完成签到 ,获得积分10
34秒前
35秒前
Tangyartie完成签到 ,获得积分10
35秒前
skbkbe完成签到 ,获得积分10
36秒前
陈俊雷完成签到 ,获得积分0
37秒前
阿苗完成签到,获得积分10
38秒前
神勇的天问完成签到 ,获得积分10
39秒前
39秒前
advance完成签到,获得积分10
39秒前
李cc发布了新的文献求助10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022