Logs with Zeros? Some Problems and Solutions

数学 零(语言学) 结果(博弈论) 统计 边距(机器学习) 泊松分布 转化(遗传学) 组合数学 计算机科学 数理经济学 哲学 语言学 生物化学 化学 机器学习 基因
作者
Jiafeng Chen,Jonathan Roth
出处
期刊:Quarterly Journal of Economics [Oxford University Press]
卷期号:139 (2): 891-936 被引量:174
标识
DOI:10.1093/qje/qjad054
摘要

Abstract When studying an outcome Y that is weakly positive but can equal zero (e.g., earnings), researchers frequently estimate an average treatment effect (ATE) for a “log-like” transformation that behaves like log (Y) for large Y but is defined at zero (e.g., log (1 + Y), $\operatorname{arcsinh}(Y)$). We argue that ATEs for log-like transformations should not be interpreted as approximating percentage effects, since unlike a percentage, they depend on the units of the outcome. In fact, we show that if the treatment affects the extensive margin, one can obtain a treatment effect of any magnitude simply by rescaling the units of Y before taking the log-like transformation. This arbitrary unit dependence arises because an individual-level percentage effect is not well-defined for individuals whose outcome changes from zero to nonzero when receiving treatment, and the units of the outcome implicitly determine how much weight the ATE for a log-like transformation places on the extensive margin. We further establish a trilemma: when the outcome can equal zero, there is no treatment effect parameter that is an average of individual-level treatment effects, unit invariant, and point identified. We discuss several alternative approaches that may be sensible in settings with an intensive and extensive margin, including (i) expressing the ATE in levels as a percentage (e.g., using Poisson regression), (ii) explicitly calibrating the value placed on the intensive and extensive margins, and (iii) estimating separate effects for the two margins (e.g., using Lee bounds). We illustrate these approaches in three empirical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mtfx完成签到,获得积分10
1秒前
2秒前
彩色冥幽发布了新的文献求助10
2秒前
小段完成签到 ,获得积分10
4秒前
SHIKI发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
dev-evo完成签到,获得积分10
7秒前
huan完成签到,获得积分10
9秒前
李健的小迷弟应助Seeker采纳,获得10
9秒前
10秒前
11秒前
11秒前
12秒前
14秒前
14秒前
小熊完成签到,获得积分10
14秒前
gxqqqqqqq完成签到 ,获得积分10
15秒前
领导范儿应助fairy112233采纳,获得10
15秒前
hwb发布了新的文献求助10
16秒前
我不李姐完成签到,获得积分10
16秒前
佳佳发布了新的文献求助10
16秒前
zzzzd发布了新的文献求助10
18秒前
19秒前
20秒前
小二郎应助小然采纳,获得10
21秒前
21秒前
派大星完成签到 ,获得积分10
22秒前
23秒前
英俊的铭应助xbb0905采纳,获得10
24秒前
樱桃猴子应助jinyy采纳,获得10
24秒前
gyd完成签到,获得积分10
26秒前
SHIKI完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
科目三应助Anyemzl采纳,获得10
28秒前
兰亭序发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145247
求助须知:如何正确求助?哪些是违规求助? 2796643
关于积分的说明 7820749
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305322
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464