已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automotive Gear Defect Detection Method based on Yolov8 Algorithm

汽车工业 增采样 计算机科学 算法 人工智能 工程类 图像(数学) 航空航天工程
作者
H. P. Wang,Genghuang Yang,Xiayi Hao,Liqing Geng
标识
DOI:10.1109/asip58895.2023.00012
摘要

For the problem of low efficiency and accuracy of automotive gear defect detection by manual visual inspection method, a detection method of automotive gear endface defects based on Yolov8s algorithm is proposed. The original Yolov8s model is improved in this paper considering the problem of smaller defects in automotive gears. Firstly, the CBAM attention mechanism was introduced in Backbone to help the model pay more attention to information related to gear defects while suppressing useless information in the data. It better captures the key features of gear defects. Secondly, a small target detection layer is added to the network structure to solve the problem of small target information loss due to the large downsampling multiplier of Yolov8s. It better extracts the features of small targets. For the problem that some defective kinds of samples in the dataset collected from real industrial scenes are too small, this paper uses the Mosaic data augmentation method, which is used to expand the number of samples and solve the problem of inadequate training to some extent. The improved Yolov8s was compared with the original Yolov8s model for experiments. The results show that the improved Yolov8s model improves both Precision and Recall over the original Yolov8s model. Meanwhile, the improved Yolov8 algorithm is used for automotive gear defect detection in a real scenario detection task, which effectively reduces the miss detection rate and shows good performance. It meets the inspection needs of real industrial scenarios, and is advanced and practical in automotive gear defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao完成签到,获得积分20
1秒前
1秒前
情怀应助皮皮不皮采纳,获得10
2秒前
boshi完成签到,获得积分10
3秒前
陌路完成签到,获得积分10
3秒前
加油吧弟弟完成签到,获得积分10
4秒前
闪闪半芹发布了新的文献求助10
5秒前
5秒前
boshi发布了新的文献求助10
5秒前
小二郎应助看不懂采纳,获得10
6秒前
11秒前
上官若男应助远方采纳,获得10
11秒前
13秒前
Grace发布了新的文献求助30
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
科目三应助尛瞐慶成采纳,获得10
14秒前
Light应助科研通管家采纳,获得10
15秒前
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得30
15秒前
慕青应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
15秒前
日出发布了新的文献求助10
18秒前
18秒前
renxiaoting发布了新的文献求助10
18秒前
天天快乐应助文房四宝采纳,获得10
19秒前
长风完成签到,获得积分10
21秒前
DKF发布了新的文献求助10
21秒前
烟花应助日出采纳,获得10
21秒前
21秒前
传奇3应助逍遥丸子采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770271
求助须知:如何正确求助?哪些是违规求助? 3315351
关于积分的说明 10175383
捐赠科研通 3030342
什么是DOI,文献DOI怎么找? 1662830
邀请新用户注册赠送积分活动 795149
科研通“疑难数据库(出版商)”最低求助积分说明 756585