Debiasing misinformation: how do people diagnose health recommendations from AI?

误传 可靠性 心理学 感知 启发式 背景(考古学) 社会心理学 计算机科学 规范性 互联网隐私 认知心理学 应用心理学 计算机安全 认识论 古生物学 哲学 神经科学 生物 操作系统
作者
Dong‐Hee Shin,Kulsawasd Jitkajornwanich,Joon Soo Lim,Anastasia Spyridou
出处
期刊:Online Information Review [Emerald (MCB UP)]
卷期号:48 (5): 1025-1044 被引量:4
标识
DOI:10.1108/oir-04-2023-0167
摘要

Purpose This study examined how people assess health information from AI and improve their diagnostic ability to identify health misinformation. The proposed model was designed to test a cognitive heuristic theory in misinformation discernment. Design/methodology/approach We proposed the heuristic-systematic model to assess health misinformation processing in the algorithmic context. Using the Analysis of Moment Structure (AMOS) 26 software, we tested fairness/transparency/accountability (FAccT) as constructs that influence the heuristic evaluation and systematic discernment of misinformation by users. To test moderating and mediating effects, PROCESS Macro Model 4 was used. Findings The effect of AI-generated misinformation on people’s perceptions of the veracity of health information may differ according to whether they process misinformation heuristically or systematically. Heuristic processing is significantly associated with the diagnosticity of misinformation. There is a greater chance that misinformation will be correctly diagnosed and checked, if misinformation aligns with users’ heuristics or is validated by the diagnosticity they perceive. Research limitations/implications When exposed to misinformation through algorithmic recommendations, users’ perceived diagnosticity of misinformation can be predicted accurately from their understanding of normative values. This perceived diagnosticity would then positively influence the accuracy and credibility of the misinformation. Practical implications Perceived diagnosticity exerts a key role in fostering misinformation literacy, implying that improving people’s perceptions of misinformation and AI features is an efficient way to change their misinformation behavior. Social implications Although there is broad agreement on the need to control and combat health misinformation, the magnitude of this problem remains unknown. It is essential to understand both users’ cognitive processes when it comes to identifying health misinformation and the diffusion mechanism from which such misinformation is framed and subsequently spread. Originality/value The mechanisms through which users process and spread misinformation have remained open-ended questions. This study provides theoretical insights and relevant recommendations that can make users and firms/institutions alike more resilient in protecting themselves from the detrimental impact of misinformation. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/OIR-04-2023-0167
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助sugar采纳,获得10
1秒前
哦豁发布了新的文献求助10
2秒前
2秒前
方赫然应助嘻嘻滑呀采纳,获得10
2秒前
XM应助张世豪采纳,获得30
3秒前
3秒前
三两完成签到 ,获得积分10
4秒前
xsf发布了新的文献求助10
5秒前
晨屿发布了新的文献求助10
5秒前
ding应助首席或雪月采纳,获得10
6秒前
深情安青应助斯文墨镜采纳,获得10
8秒前
10秒前
12秒前
顾矜应助xsf采纳,获得10
12秒前
劲秉应助hh0采纳,获得150
12秒前
糊涂的麦片完成签到,获得积分10
12秒前
lile完成签到,获得积分10
13秒前
CodeCraft应助大曾采纳,获得10
14秒前
明亮的大门完成签到,获得积分10
14秒前
罗_应助Sience采纳,获得10
14秒前
14秒前
wxc完成签到,获得积分10
16秒前
满意的柏柳完成签到,获得积分10
17秒前
17秒前
踏实秋莲完成签到,获得积分10
18秒前
malenia完成签到,获得积分10
20秒前
斯文墨镜发布了新的文献求助10
20秒前
hxnz2001完成签到,获得积分10
20秒前
20秒前
20秒前
伶俐剑心完成签到,获得积分10
22秒前
hxnz2001发布了新的文献求助10
22秒前
梦璃完成签到,获得积分10
24秒前
24秒前
25秒前
科研通AI2S应助木染采纳,获得10
26秒前
26秒前
27秒前
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3255818
求助须知:如何正确求助?哪些是违规求助? 2898005
关于积分的说明 8299290
捐赠科研通 2567114
什么是DOI,文献DOI怎么找? 1394342
科研通“疑难数据库(出版商)”最低求助积分说明 652760
邀请新用户注册赠送积分活动 630474