Medicine Package Recommendation via Dual-Level Interaction Aware Heterogeneous Graph

计算机科学 图形 对偶(语法数字) 人工智能 情报检索 理论计算机科学 艺术 文学类
作者
Fanglin Zhu,Xu Zhang,Batuo Zhang,Yonghui Xu,Lizhen Cui
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2294-2303 被引量:1
标识
DOI:10.1109/jbhi.2024.3361552
摘要

Medicine package recommendation aims to assist doctors in clinical decision-making by recommending appropriate packages of medicines for patients. Current methods model this task as a munderlineti-label classification or sequence generation problem, focusing on learning relationships between individual medicines and other medical entities. However, these approaches uniformly overlook the interactions between medicine packages and other medical entities, potentially resunderlineting in a lack of completeness in recommended medicine packages. Furthermore, medicine commonsense knowledge considered by current methods is notably limited, making it challenging to delve into the decision-making processes of doctors. To solve these problems, we propose DIAGNN, a D ual-level I nteraction A ware heterogeneous G raph N eural N etwork for medicine package recommendation. Specifically, DIAGNN explicitly models interactions of medical entities within electronic health records(EHRs) at two levels, individual medicine and medicine package, leveraging a heterogeneous graph. A dual-level interaction aware graph convolutional network is utilized to capture semantic information in the medical heterogeneous graph. Additionally, we incorporate medication indications into the medical heterogeneous graph as medicine commonsense knowledge. Extensive experimental resunderlinets on real-world datasets validate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DDd完成签到 ,获得积分10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
8秒前
9秒前
鹿阿布完成签到,获得积分10
9秒前
玖文发布了新的文献求助10
10秒前
13秒前
虚拟的日记本完成签到 ,获得积分10
14秒前
庾稀完成签到,获得积分20
15秒前
15秒前
三火完成签到,获得积分10
16秒前
仁爱的若剑完成签到 ,获得积分10
16秒前
纸飞机发布了新的文献求助10
17秒前
Zirong发布了新的文献求助10
21秒前
青炀发布了新的文献求助10
23秒前
隐形曼青应助庾稀采纳,获得10
24秒前
25秒前
轩辕唯雪完成签到,获得积分10
25秒前
顾矜应助accelerate采纳,获得30
26秒前
28秒前
28秒前
Casengyue完成签到,获得积分10
28秒前
G1997完成签到 ,获得积分10
29秒前
轩辕唯雪发布了新的文献求助20
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388