Efficient cocrystal coformer screening based on a Machine learning Strategy: A case study for the preparation of imatinib cocrystal with enhanced physicochemical properties

共晶 溶解度 活性成分 化学 甲磺酸伊马替尼 溶解 组合化学 伊马替尼 纳米技术 材料科学 有机化学 药理学 氢键 分子 生物 医学 髓系白血病 免疫学
作者
Xiaoxiao Liang,Shiyuan Liu,Zebin Li,Yuehua Deng,Yanbin Jiang,Huaiyu Yang
出处
期刊:European Journal of Pharmaceutics and Biopharmaceutics [Elsevier]
卷期号:196: 114201-114201 被引量:1
标识
DOI:10.1016/j.ejpb.2024.114201
摘要

Cocrystal engineering, which involves the self-assembly of two or more components into a solid-state supramolecular structure through non-covalent interactions, has emerged as a promising approach to tailor the physicochemical properties of active pharmaceutical ingredient (API). Efficient coformer screening for cocrystal remains a challenge. Herein, a prediction strategy based on machine learning algorithms was employed to predict cocrystal formation and seven reliable models with accuracy over 0.890 were successfully constructed. Imatinib was selected as the model drug and the models established were applied to screen 31 potential coformers. Experimental verification results indicated RF-8 is the optimal model among seven models with an accuracy of 0.839. When the seven models were combined for coformer screening of Imatinib, the combinational model achieved an accuracy of 0.903, and eight new solid forms were observed and characterized. Benefiting from intermolecular interactions, the obtained multicomponent crystals displayed enhanced physicochemical properties. Dissolution and solubility experiments showed the prepared multicomponent crystals had higher cumulative dissolution rate and remarkably improved the solubility of imatinib, and IM-MC exhibited comparable solubility to Imatinib mesylate α form. Stability test and cytotoxicity results showed that multicomponent crystals exhibited excellent stability and the drug-drug cocrystal IM-5F exhibited higher cytotoxicity than pure API.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adoretheall完成签到,获得积分10
刚刚
刚刚
熠熠完成签到,获得积分10
1秒前
2秒前
阳光海云应助Grinder采纳,获得10
2秒前
orixero应助叁少采纳,获得10
2秒前
3秒前
燕知南发布了新的文献求助10
3秒前
三口发布了新的文献求助10
3秒前
科目三应助宇文青寒采纳,获得10
4秒前
刘1发布了新的文献求助10
4秒前
5秒前
5秒前
坦率的幻梅完成签到,获得积分20
5秒前
彭于晏应助Sophie采纳,获得10
6秒前
LX完成签到,获得积分10
6秒前
6秒前
Jasper应助BGRC131031采纳,获得10
7秒前
思源应助虚幻的冷松采纳,获得10
7秒前
cuizhiyu完成签到,获得积分10
8秒前
NZH关闭了NZH文献求助
8秒前
踏实滑板发布了新的文献求助10
8秒前
夕荀发布了新的文献求助10
10秒前
林夕雅发布了新的文献求助10
10秒前
10秒前
月牙湾发布了新的文献求助10
11秒前
11秒前
高兴的半凡完成签到,获得积分10
11秒前
似画完成签到 ,获得积分10
11秒前
漂亮的不言完成签到 ,获得积分10
11秒前
syx完成签到,获得积分10
12秒前
13秒前
15秒前
aaaa完成签到 ,获得积分10
15秒前
fan完成签到,获得积分10
15秒前
甜甜玫瑰应助啵清啵采纳,获得10
16秒前
彩色橘子完成签到,获得积分10
17秒前
后来完成签到,获得积分10
17秒前
18秒前
大卫在分享应助小心力学采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156292
求助须知:如何正确求助?哪些是违规求助? 2807762
关于积分的说明 7874438
捐赠科研通 2465982
什么是DOI,文献DOI怎么找? 1312538
科研通“疑难数据库(出版商)”最低求助积分说明 630166
版权声明 601912