Prediction of cervical lymph node metastasis in differentiated thyroid cancer based on radiomics models

无线电技术 医学 荟萃分析 淋巴结 放射科 转移 淋巴结转移 磁共振成像 宫颈癌 肿瘤科 内科学 癌症
作者
Jingshi Mu,Yuan Cao,Xiao Zhong,Wei Diao,Zhiyun Jia
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:97 (1155): 526-534 被引量:1
标识
DOI:10.1093/bjr/tqae010
摘要

Abstract Objective The accurate clinical diagnosis of cervical lymph node metastasis plays an important role in the treatment of differentiated thyroid cancer (DTC). This study aimed to explore and summarize a more objective approach to detect cervical malignant lymph node metastasis of DTC via radiomics models. Methods PubMed, Web of Science, MEDLINE, EMBASE, and Cochrane databases were searched for all eligible studies. Articles using radiomics models based on ultrasound, computed tomography, or magnetic resonance imaging to assess cervical lymph node metastasis preoperatively were included. Characteristics and diagnostic accuracy measures were extracted. Bias and applicability judgments were evaluated by the revised QUADAS-2 tool. The estimates were pooled using a random-effects model. Additionally, the leave-one-out method was conducted to assess the heterogeneity. Results Twenty-nine radiomics studies with 6160 validation set patients were included in the qualitative analysis, and 11 studies with 3863 validation set patients were included in the meta-analysis. Four of them had an external independent validation set. The studies were heterogeneous, and a significant risk of bias was found in 29 studies. Meta-analysis showed that the pooled sensitivity and specificity for preoperative prediction of lymph node metastasis via US-based radiomics were 0.81 (95% CI, 0.73-0.86) and 0.87 (95% CI, 0.83-0.91), respectively. Conclusions Although radiomics-based models for cervical lymphatic metastasis in DTC have been demonstrated to have moderate diagnostic capabilities, broader data, standardized radiomics features, robust feature selection, and model exploitation are still needed in the future. Advances in knowledge The radiomics models showed great potential in detecting malignant lymph nodes in thyroid cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助30
1秒前
laity发布了新的文献求助10
2秒前
eric完成签到,获得积分10
2秒前
诚心宛筠应助无语的夜春采纳,获得10
3秒前
enen发布了新的文献求助10
3秒前
3秒前
热心幻天发布了新的文献求助10
4秒前
归尘发布了新的文献求助10
5秒前
善良的茗茗完成签到,获得积分20
6秒前
8秒前
西瓜西瓜完成签到,获得积分10
8秒前
科研通AI6应助kkk采纳,获得10
9秒前
9秒前
勤奋的绝义完成签到 ,获得积分10
9秒前
SciGPT应助Dara采纳,获得10
9秒前
9秒前
乐乐应助刘欣采纳,获得10
10秒前
搜集达人应助hhh采纳,获得10
11秒前
11秒前
linglingling完成签到 ,获得积分10
12秒前
13秒前
桐桐应助enen采纳,获得10
14秒前
老王发布了新的文献求助10
14秒前
思源应助小福星饼干采纳,获得10
14秒前
sansan发布了新的文献求助10
14秒前
唄肯妮发布了新的文献求助10
14秒前
liujian发布了新的文献求助10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
沉淀完成签到,获得积分20
16秒前
17秒前
梁三柏举报量子星尘求助涉嫌违规
19秒前
19秒前
葳蕤发布了新的文献求助10
20秒前
xiubo128发布了新的文献求助10
21秒前
小智发布了新的文献求助10
22秒前
Criminology34应助mumian采纳,获得20
23秒前
唐唐发布了新的文献求助10
24秒前
在水一方应助liujian采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613310
求助须知:如何正确求助?哪些是违规求助? 4698482
关于积分的说明 14898087
捐赠科研通 4735844
什么是DOI,文献DOI怎么找? 2546985
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473545