Unmanned Aerial Vehicle Fault Diagnosis Based on Ensemble Deep Learning Model

计算机科学 人工智能 卷积神经网络 集成学习 断层(地质) 深度学习 一般化 特征(语言学) 模式识别(心理学) 机器学习 数学 语言学 地质学 数学分析 哲学 地震学
作者
Qingnan Huang,Benhao Liang,Xisheng Dai,Shan Su,Enze Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 046205-046205 被引量:5
标识
DOI:10.1088/1361-6501/ad2051
摘要

Abstract To address the problems of external interference during unmanned aerial vehicle (UAV) flight and the low accuracy and weak generalization ability of the current single fault diagnosis model, this work proposes a weighted ensemble deep learning UAV fault diagnosis method. First, considering the differences in training methods and fault feature recognition principles of deep networks with different structures, three hybrid fault diagnosis models are constructed. These models are constructed by combining convolutional neural network (CNN), bidirectional long short-term memory (BiLSTM) and bidirectional gate recurrent unit (BiGRU). CNN is used to extract the features of the UAV flight data and the obtained feature information is fed into BiLSTM and BiGRU to explore the fault information inherent in the time series data. Then, the three hybrid fault diagnosis models are used as the individual model of the ensemble learning algorithm, and the weights of the three individual models are optimized using a random grid search algorithm to construct a UAV fault diagnosis model based on hybrid deep learning weighted ensemble, which further improves the fault diagnosis performance. Finally, it is demonstrated experimentally that the proposed hybrid deep learning weighted ensemble fault diagnosis model can effectively identify the fault of UAV with an accuracy of 99.22 % and 99.62 % on binary and multivariate classification, respectively, and reflects better generalization performance in the metrics of precision, recall, and F1 score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WM发布了新的文献求助10
1秒前
Akim应助小沈采纳,获得10
1秒前
猪猪hero发布了新的文献求助30
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
YY完成签到 ,获得积分10
3秒前
YifanWang应助彪壮的柜子采纳,获得10
3秒前
mayberichard发布了新的文献求助10
3秒前
开心就好发布了新的文献求助10
3秒前
柯善鹏发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
yongkun发布了新的文献求助10
4秒前
JYXCJ发布了新的文献求助10
4秒前
4秒前
4秒前
xyzzs给xyzzs的求助进行了留言
4秒前
科研123完成签到,获得积分20
5秒前
阳小颖发布了新的文献求助10
5秒前
5秒前
5秒前
汉克爱学习完成签到,获得积分10
7秒前
科目三应助幽默翠桃采纳,获得10
7秒前
7秒前
Bryn_Wang完成签到,获得积分10
7秒前
fortune发布了新的文献求助10
9秒前
ylbb发布了新的文献求助10
9秒前
开放鸿涛发布了新的文献求助10
9秒前
令狐擎宇发布了新的文献求助10
9秒前
黄菠萝发布了新的文献求助10
10秒前
tt发布了新的文献求助30
10秒前
11秒前
小小旋风发布了新的文献求助10
11秒前
xixi完成签到,获得积分10
12秒前
Jasper应助zhao采纳,获得10
13秒前
852应助罗罗luoluo采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095