Predicting Penicillin Allergy: A United States Multicenter Retrospective Study.

青霉素过敏 医学 青霉素 回顾性队列研究 逻辑回归 过敏 药物过敏 内科学 抗生素 免疫学 微生物学 生物
作者
Alexei Gonzalez‐Estrada,Miguel A. Park,John J.O. Accarino,Aleena Banerji,Ismael Carrillo‐Martin,Michael D’Netto,W. Tatiana Garzon-Siatoya,Heather D. Hardway,Hajara Joundi,Susan Kinate,Jessica Plager,Matthew A. Rank,Christine Rukasin,Upeka Samarakoon,Gerald W. Volcheck,Alexander D. Weston,Anna R. Wolfson,Kimberly G. Blumenthal
出处
期刊:The Journal of Allergy and Clinical Immunology: In Practice [Elsevier]
被引量:1
标识
DOI:10.1016/j.jaip.2024.01.010
摘要

Background Using the reaction history in logistic regression and machine learning (ML) models to predict penicillin allergy has been reported based on non-United States (US) data. Objective We developed ML positive penicillin allergy testing prediction models from multi-site US data. Methods Retrospective data from four US-based hospitals were grouped into four datasets: enriched training (1:3 case-control matched cohort), enriched testing, non-enriched internal testing, and non-enriched external testing. ML algorithms were used for model development. We determined area under the curve (AUC) and applied the Shapley Additive exPlanations (SHAP) framework to interpret risk drivers. Results Of 4,777 patients (mean age 60 [SD 17], 68% women, 91% White, 86% non-Hispanic) evaluated for penicillin allergy labels, 513 (11%) had positive penicillin allergy testing. Model input variables were frequently missing: immediate or delayed onset (71%), signs or symptoms (13%), and treatment (31%). The gradient boosted model was the strongest model with an AUC of 0.67 (95%CI 0.57-0.77), which improved to 0.87 (95%CI 0.73-1) when only cases with complete data were used. Top SHAP drivers for positive testing were reactions within the last year and reactions requiring medical attention; female sex and reaction of hives/urticaria were also positive drivers. Conclusion A ML prediction model for positive penicillin allergy skin testing using US-based retrospective data did not achieve performance strong enough for acceptance and adoption. The optimal ML prediction model for positive penicillin allergy testing was driven by time since reaction, seek medical attention, female sex, and hives/urticaria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助111采纳,获得10
刚刚
Accept应助wintercyan采纳,获得20
刚刚
哲999完成签到,获得积分10
刚刚
Mian完成签到,获得积分10
刚刚
1秒前
1秒前
于嗣濠完成签到 ,获得积分10
1秒前
36456657应助CC采纳,获得10
1秒前
优雅山柏发布了新的文献求助10
2秒前
Jacky完成签到,获得积分10
2秒前
脑洞疼应助无情的白桃采纳,获得10
2秒前
mm发布了新的文献求助10
2秒前
3秒前
3秒前
zoko发布了新的文献求助10
3秒前
3秒前
曾经的臻发布了新的文献求助10
3秒前
华仔应助S1mple_gentleman采纳,获得10
3秒前
科研通AI5应助CC采纳,获得10
3秒前
3秒前
4秒前
4秒前
张静静完成签到,获得积分10
5秒前
5秒前
震666发布了新的文献求助30
5秒前
MADKAI发布了新的文献求助10
5秒前
5秒前
117发布了新的文献求助10
5秒前
6秒前
6秒前
酶没美镁完成签到,获得积分10
6秒前
小二郎应助Rui采纳,获得10
6秒前
Libra完成签到,获得积分10
7秒前
雪儿发布了新的文献求助30
7秒前
无悔呀发布了新的文献求助10
7秒前
小巧的可仁完成签到 ,获得积分10
7秒前
7秒前
zhao完成签到,获得积分10
8秒前
masu发布了新的文献求助10
8秒前
冷酷尔琴发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740