Predicting Penicillin Allergy: A United States Multicenter Retrospective Study.

青霉素过敏 医学 青霉素 回顾性队列研究 逻辑回归 过敏 药物过敏 内科学 抗生素 免疫学 微生物学 生物
作者
Alexei Gonzalez‐Estrada,Miguel A. Park,John J.O. Accarino,Aleena Banerji,Ismael Carrillo‐Martin,Michael D’Netto,W. Tatiana Garzon-Siatoya,Heather D. Hardway,Hajara Joundi,Susan Kinate,Jessica Plager,Matthew A. Rank,Christine Rukasin,Upeka Samarakoon,Gerald W. Volcheck,Alexander D. Weston,Anna R. Wolfson,Kimberly G. Blumenthal
出处
期刊:The Journal of Allergy and Clinical Immunology: In Practice [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.jaip.2024.01.010
摘要

Background Using the reaction history in logistic regression and machine learning (ML) models to predict penicillin allergy has been reported based on non-United States (US) data. Objective We developed ML positive penicillin allergy testing prediction models from multi-site US data. Methods Retrospective data from four US-based hospitals were grouped into four datasets: enriched training (1:3 case-control matched cohort), enriched testing, non-enriched internal testing, and non-enriched external testing. ML algorithms were used for model development. We determined area under the curve (AUC) and applied the Shapley Additive exPlanations (SHAP) framework to interpret risk drivers. Results Of 4,777 patients (mean age 60 [SD 17], 68% women, 91% White, 86% non-Hispanic) evaluated for penicillin allergy labels, 513 (11%) had positive penicillin allergy testing. Model input variables were frequently missing: immediate or delayed onset (71%), signs or symptoms (13%), and treatment (31%). The gradient boosted model was the strongest model with an AUC of 0.67 (95%CI 0.57-0.77), which improved to 0.87 (95%CI 0.73-1) when only cases with complete data were used. Top SHAP drivers for positive testing were reactions within the last year and reactions requiring medical attention; female sex and reaction of hives/urticaria were also positive drivers. Conclusion A ML prediction model for positive penicillin allergy skin testing using US-based retrospective data did not achieve performance strong enough for acceptance and adoption. The optimal ML prediction model for positive penicillin allergy testing was driven by time since reaction, seek medical attention, female sex, and hives/urticaria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lei.qin完成签到 ,获得积分10
1秒前
1秒前
luoqin完成签到 ,获得积分10
1秒前
2秒前
柠檬发布了新的文献求助30
2秒前
舍我其谁完成签到,获得积分20
3秒前
啊怙纲完成签到 ,获得积分10
3秒前
蜡笔小新完成签到,获得积分10
3秒前
小玲玲完成签到,获得积分10
3秒前
DGFR完成签到,获得积分10
4秒前
qqqqq完成签到,获得积分10
4秒前
少雄完成签到,获得积分10
5秒前
tian发布了新的文献求助10
5秒前
魏傀斗完成签到,获得积分0
6秒前
hhhhhh应助左丘以云采纳,获得10
6秒前
6秒前
angelis完成签到,获得积分10
7秒前
nightmare完成签到,获得积分10
7秒前
陈永伟完成签到,获得积分10
7秒前
和谐乌龟完成签到,获得积分10
7秒前
哈哈哈完成签到,获得积分10
7秒前
飞扑大王完成签到,获得积分10
7秒前
沉默傲薇发布了新的文献求助10
7秒前
yangya完成签到,获得积分10
7秒前
暴躁的马里奥完成签到,获得积分10
9秒前
轻轻完成签到,获得积分10
9秒前
师宁完成签到,获得积分10
11秒前
11秒前
ChengYonghui完成签到,获得积分10
11秒前
nasya完成签到,获得积分10
11秒前
顾矜应助Maxpan采纳,获得20
12秒前
lmh完成签到,获得积分10
12秒前
踏实的幻香完成签到,获得积分10
13秒前
HOLLOW完成签到,获得积分10
13秒前
13秒前
爱笑的蘑菇完成签到,获得积分10
14秒前
慕青应助沉默傲薇采纳,获得10
15秒前
jtyt完成签到,获得积分10
15秒前
angelis发布了新的文献求助10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259