Predicting Penicillin Allergy: A United States Multicenter Retrospective Study.

青霉素过敏 医学 青霉素 回顾性队列研究 逻辑回归 过敏 药物过敏 内科学 抗生素 免疫学 微生物学 生物
作者
Alexei Gonzalez‐Estrada,Miguel A. Park,John J.O. Accarino,Aleena Banerji,Ismael Carrillo‐Martin,Michael D’Netto,W. Tatiana Garzon-Siatoya,Heather D. Hardway,Hajara Joundi,Susan Kinate,Jessica Plager,Matthew A. Rank,Christine Rukasin,Upeka Samarakoon,Gerald W. Volcheck,Alexander D. Weston,Anna R. Wolfson,Kimberly G. Blumenthal
出处
期刊:The Journal of Allergy and Clinical Immunology: In Practice [Elsevier]
被引量:1
标识
DOI:10.1016/j.jaip.2024.01.010
摘要

Background Using the reaction history in logistic regression and machine learning (ML) models to predict penicillin allergy has been reported based on non-United States (US) data. Objective We developed ML positive penicillin allergy testing prediction models from multi-site US data. Methods Retrospective data from four US-based hospitals were grouped into four datasets: enriched training (1:3 case-control matched cohort), enriched testing, non-enriched internal testing, and non-enriched external testing. ML algorithms were used for model development. We determined area under the curve (AUC) and applied the Shapley Additive exPlanations (SHAP) framework to interpret risk drivers. Results Of 4,777 patients (mean age 60 [SD 17], 68% women, 91% White, 86% non-Hispanic) evaluated for penicillin allergy labels, 513 (11%) had positive penicillin allergy testing. Model input variables were frequently missing: immediate or delayed onset (71%), signs or symptoms (13%), and treatment (31%). The gradient boosted model was the strongest model with an AUC of 0.67 (95%CI 0.57-0.77), which improved to 0.87 (95%CI 0.73-1) when only cases with complete data were used. Top SHAP drivers for positive testing were reactions within the last year and reactions requiring medical attention; female sex and reaction of hives/urticaria were also positive drivers. Conclusion A ML prediction model for positive penicillin allergy skin testing using US-based retrospective data did not achieve performance strong enough for acceptance and adoption. The optimal ML prediction model for positive penicillin allergy testing was driven by time since reaction, seek medical attention, female sex, and hives/urticaria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pero完成签到,获得积分10
刚刚
不尔发布了新的文献求助10
2秒前
3秒前
daisy发布了新的文献求助10
4秒前
呆萌从蓉完成签到 ,获得积分20
5秒前
维生素c完成签到 ,获得积分10
7秒前
8秒前
9秒前
无花果应助不尔采纳,获得10
10秒前
xinyingking完成签到,获得积分10
10秒前
daisy完成签到,获得积分10
11秒前
zhaoyaoshi完成签到 ,获得积分10
11秒前
federish完成签到 ,获得积分10
13秒前
小白一号完成签到 ,获得积分10
14秒前
LUMOS完成签到,获得积分20
16秒前
啊唔完成签到 ,获得积分10
19秒前
智慧少女不头秃完成签到,获得积分10
24秒前
dark完成签到,获得积分10
25秒前
天玄一刀完成签到,获得积分10
27秒前
斯文败类应助高骏伟采纳,获得10
27秒前
taozi完成签到,获得积分10
27秒前
天天浇水完成签到,获得积分10
31秒前
lu完成签到,获得积分10
31秒前
32秒前
genomed应助shame采纳,获得10
32秒前
甜甜的不二完成签到,获得积分10
33秒前
科研通AI2S应助LUMOS采纳,获得30
33秒前
LX完成签到,获得积分10
33秒前
HEIKU应助科研通管家采纳,获得10
35秒前
Owen应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
HEIKU应助科研通管家采纳,获得10
35秒前
去看海嘛应助科研通管家采纳,获得10
35秒前
大个应助科研通管家采纳,获得10
35秒前
Yziii应助科研通管家采纳,获得20
35秒前
酷波er应助科研通管家采纳,获得10
35秒前
Yziii应助科研通管家采纳,获得20
35秒前
ding应助科研通管家采纳,获得10
35秒前
35秒前
今后应助科研通管家采纳,获得10
35秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165001
求助须知:如何正确求助?哪些是违规求助? 2816026
关于积分的说明 7911307
捐赠科研通 2475709
什么是DOI,文献DOI怎么找? 1318362
科研通“疑难数据库(出版商)”最低求助积分说明 632098
版权声明 602370