Predicting Penicillin Allergy: A United States Multicenter Retrospective Study

青霉素过敏 医学 青霉素 多中心研究 回顾性队列研究 过敏 梅德林 儿科 内科学 抗生素 免疫学 随机对照试验 微生物学 生物 政治学 法学
作者
Alexei Gonzalez‐Estrada,Miguel A. Park,John J.O. Accarino,Aleena Banerji,Ismael Carrillo‐Martin,Michael D’Netto,W. Tatiana Garzon-Siatoya,Heather D Hardway,Hajara Joundi,Susan Kinate,Jessica Plager,Matthew A. Rank,Christine Rukasin,Upeka Samarakoon,Gerald W. Volcheck,Alexander D. Weston,Anna R. Wolfson,Kimberly G. Blumenthal
出处
期刊:The Journal of Allergy and Clinical Immunology: In Practice [Elsevier]
卷期号:12 (5): 1181-1191.e10 被引量:6
标识
DOI:10.1016/j.jaip.2024.01.010
摘要

Background Using the reaction history in logistic regression and machine learning (ML) models to predict penicillin allergy has been reported based on non-United States (US) data. Objective We developed ML positive penicillin allergy testing prediction models from multi-site US data. Methods Retrospective data from four US-based hospitals were grouped into four datasets: enriched training (1:3 case-control matched cohort), enriched testing, non-enriched internal testing, and non-enriched external testing. ML algorithms were used for model development. We determined area under the curve (AUC) and applied the Shapley Additive exPlanations (SHAP) framework to interpret risk drivers. Results Of 4,777 patients (mean age 60 [SD 17], 68% women, 91% White, 86% non-Hispanic) evaluated for penicillin allergy labels, 513 (11%) had positive penicillin allergy testing. Model input variables were frequently missing: immediate or delayed onset (71%), signs or symptoms (13%), and treatment (31%). The gradient boosted model was the strongest model with an AUC of 0.67 (95%CI 0.57-0.77), which improved to 0.87 (95%CI 0.73-1) when only cases with complete data were used. Top SHAP drivers for positive testing were reactions within the last year and reactions requiring medical attention; female sex and reaction of hives/urticaria were also positive drivers. Conclusion A ML prediction model for positive penicillin allergy skin testing using US-based retrospective data did not achieve performance strong enough for acceptance and adoption. The optimal ML prediction model for positive penicillin allergy testing was driven by time since reaction, seek medical attention, female sex, and hives/urticaria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大尾巴白发布了新的文献求助10
刚刚
刚刚
ocean完成签到,获得积分10
刚刚
郭6666完成签到,获得积分10
1秒前
llly发布了新的文献求助10
1秒前
沉默诗兰完成签到,获得积分10
1秒前
1秒前
zho发布了新的文献求助10
1秒前
科研人发布了新的文献求助10
2秒前
stoneff612发布了新的文献求助10
2秒前
3秒前
MarsXHXL发布了新的文献求助10
3秒前
栀尽夏完成签到,获得积分10
3秒前
无花果应助呼啦啦采纳,获得10
3秒前
3秒前
Yang完成签到,获得积分10
3秒前
萧东辰完成签到,获得积分10
3秒前
3秒前
活泼学生完成签到,获得积分10
3秒前
4秒前
Li完成签到,获得积分10
4秒前
轻松盼雁完成签到,获得积分10
4秒前
4秒前
包容寻芹完成签到,获得积分10
4秒前
lilyz615完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
1433223完成签到,获得积分10
5秒前
6秒前
LL完成签到,获得积分10
6秒前
可可完成签到,获得积分10
7秒前
momo应助小沫采纳,获得10
7秒前
英姑应助mafangfang采纳,获得10
7秒前
lisa完成签到,获得积分10
7秒前
llu完成签到,获得积分10
7秒前
眼睛大凤发布了新的文献求助10
7秒前
CipherSage应助清歌扶酒采纳,获得10
8秒前
li完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017