TG468: a text graph convolutional network for predicting clinical response to immune checkpoint inhibitor therapy

计算机科学 外显子组 外显子组测序 人工智能 机器学习 卷积神经网络 计算生物学 免疫检查点 免疫疗法 免疫系统 医学 基因 生物 免疫学 突变 生物化学
作者
Kun Wang,Jiangshan Shi,Xiaochu Tong,Ning Qu,Xiangtai Kong,Shengkun Ni,Jing Xing,Xutong Li,Mingyue Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae017
摘要

Abstract Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468’s prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model’s predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助ww采纳,获得10
1秒前
1秒前
呆萌谷兰发布了新的文献求助10
2秒前
ruiii完成签到 ,获得积分10
2秒前
2秒前
北方集群完成签到,获得积分10
3秒前
科研通AI2S应助司纤户羽采纳,获得10
3秒前
WittingGU完成签到,获得积分0
3秒前
hhllhh完成签到 ,获得积分10
5秒前
5秒前
liuke完成签到,获得积分10
5秒前
朝北完成签到 ,获得积分10
6秒前
小九九完成签到,获得积分10
7秒前
畅快的念烟完成签到,获得积分10
8秒前
9秒前
dingxy1009完成签到,获得积分10
9秒前
fengpu完成签到,获得积分10
11秒前
NexusExplorer应助果实采纳,获得10
11秒前
11秒前
清风慎独完成签到,获得积分10
11秒前
日暮炊烟完成签到 ,获得积分0
12秒前
小圆圈发布了新的文献求助10
13秒前
15秒前
俏皮易绿完成签到 ,获得积分10
17秒前
ang完成签到,获得积分10
18秒前
LCX完成签到,获得积分10
20秒前
大俊哥完成签到,获得积分10
20秒前
小赞发布了新的文献求助10
21秒前
22秒前
霸气的猎豹完成签到,获得积分10
22秒前
魏莱完成签到,获得积分10
24秒前
hihi完成签到,获得积分0
25秒前
marinemiao完成签到,获得积分10
27秒前
_Forelsket_关注了科研通微信公众号
29秒前
老西瓜完成签到,获得积分10
29秒前
30秒前
30秒前
奈何完成签到,获得积分10
32秒前
Abi完成签到,获得积分10
35秒前
wenwen完成签到,获得积分10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185