TG468: a text graph convolutional network for predicting clinical response to immune checkpoint inhibitor therapy

计算机科学 外显子组 外显子组测序 人工智能 机器学习 卷积神经网络 计算生物学 免疫检查点 免疫疗法 免疫系统 医学 基因 生物 免疫学 突变 生物化学
作者
Kun Wang,Jiangshan Shi,Xiaochu Tong,Ning Qu,Xiangtai Kong,Shengkun Ni,Jing Xing,Xutong Li,Mingyue Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae017
摘要

Abstract Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468’s prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model’s predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taogege完成签到,获得积分10
3秒前
whitezhu完成签到,获得积分10
4秒前
woo关注了科研通微信公众号
4秒前
ZZ完成签到,获得积分10
6秒前
苗条的枕头完成签到 ,获得积分10
7秒前
热情大树完成签到,获得积分10
11秒前
kk完成签到,获得积分10
12秒前
LYC完成签到,获得积分10
13秒前
调皮的巧凡完成签到,获得积分10
14秒前
南木完成签到,获得积分10
15秒前
perfect完成签到 ,获得积分10
15秒前
猪猪侠完成签到 ,获得积分10
20秒前
严羽完成签到,获得积分10
23秒前
葡萄柚子完成签到 ,获得积分10
23秒前
29秒前
爱吃的肥虾完成签到,获得积分10
29秒前
29秒前
hilm应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
30秒前
TaoTaooooII完成签到,获得积分10
30秒前
将将将应助科研通管家采纳,获得10
30秒前
30秒前
将将将应助科研通管家采纳,获得10
30秒前
30秒前
hey完成签到,获得积分10
30秒前
31秒前
五月天完成签到,获得积分10
31秒前
斯文的老虎完成签到,获得积分10
32秒前
34秒前
李不乐完成签到,获得积分10
40秒前
老野猫完成签到 ,获得积分10
45秒前
50秒前
seven完成签到,获得积分10
50秒前
雪梅完成签到 ,获得积分10
51秒前
李沐唅完成签到,获得积分10
51秒前
40873完成签到 ,获得积分10
52秒前
57秒前
1分钟前
ww完成签到,获得积分10
1分钟前
Jeamren完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465567
求助须知:如何正确求助?哪些是违规求助? 4569829
关于积分的说明 14321219
捐赠科研通 4496303
什么是DOI,文献DOI怎么找? 2463217
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427369