TG468: a text graph convolutional network for predicting clinical response to immune checkpoint inhibitor therapy

计算机科学 外显子组 外显子组测序 人工智能 机器学习 卷积神经网络 计算生物学 免疫检查点 免疫疗法 免疫系统 医学 基因 生物 免疫学 突变 生物化学
作者
Kun Wang,Jiangshan Shi,Xiaochu Tong,Ning Qu,Xiangtai Kong,Shengkun Ni,Jing Xing,Xutong Li,Mingyue Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae017
摘要

Abstract Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468’s prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model’s predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
结实伯云完成签到,获得积分10
2秒前
qyn1234566发布了新的文献求助10
3秒前
zik应助inno采纳,获得10
3秒前
cxc完成签到,获得积分10
3秒前
3秒前
xixi发布了新的文献求助10
3秒前
小李关注了科研通微信公众号
4秒前
隐形曼青应助延胡索采纳,获得10
4秒前
慕青应助Clover04采纳,获得10
4秒前
汉堡包应助六十一采纳,获得10
4秒前
标致的耷发布了新的文献求助10
4秒前
鳗鱼匕发布了新的文献求助10
4秒前
NexusExplorer应助花与海采纳,获得10
4秒前
科研通AI2S应助11111采纳,获得30
5秒前
我是老大应助Xiaoxin_Ju采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
糯米发布了新的文献求助10
5秒前
NikolasZ发布了新的文献求助10
5秒前
5秒前
LYL完成签到,获得积分10
7秒前
7秒前
8秒前
卷卷应助niuge02采纳,获得10
9秒前
9秒前
院士完成签到,获得积分10
9秒前
FL发布了新的文献求助10
9秒前
9秒前
Akim应助nn采纳,获得10
10秒前
HUA关闭了HUA文献求助
10秒前
10秒前
大模型应助陈礼莹采纳,获得10
11秒前
11秒前
JIAYU完成签到,获得积分10
11秒前
11秒前
平常板栗完成签到 ,获得积分10
11秒前
666完成签到,获得积分10
11秒前
没有花活儿完成签到,获得积分10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066