TG468: a text graph convolutional network for predicting clinical response to immune checkpoint inhibitor therapy

计算机科学 外显子组 外显子组测序 人工智能 机器学习 卷积神经网络 计算生物学 免疫检查点 免疫疗法 免疫系统 医学 基因 生物 免疫学 突变 生物化学
作者
Kun Wang,Jiangshan Shi,Xiaochu Tong,Ning Qu,Xiangtai Kong,Shengkun Ni,Jing Xing,Xutong Li,Mingyue Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae017
摘要

Abstract Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468’s prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model’s predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
王慧发布了新的文献求助10
刚刚
renshiq完成签到,获得积分10
1秒前
2秒前
华仔应助凤梨采纳,获得10
3秒前
lhm发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助上山的吗喽采纳,获得10
5秒前
麦当当发布了新的文献求助30
5秒前
6秒前
欧贤书完成签到,获得积分20
7秒前
00279完成签到,获得积分10
7秒前
8秒前
千夜冰柠萌完成签到,获得积分10
8秒前
外向的天晴完成签到,获得积分10
8秒前
爆米花应助111采纳,获得10
8秒前
9秒前
9秒前
张岱帅z完成签到,获得积分0
9秒前
10秒前
11秒前
11秒前
11秒前
GHX_1195979443完成签到 ,获得积分10
11秒前
ALL完成签到,获得积分10
11秒前
ww完成签到,获得积分10
11秒前
12秒前
wang发布了新的文献求助30
12秒前
PiaoGuo完成签到,获得积分10
12秒前
13秒前
刘羽萱发布了新的文献求助10
13秒前
迷人成协发布了新的文献求助10
13秒前
ayintree发布了新的文献求助30
15秒前
lhm完成签到,获得积分10
15秒前
percy完成签到 ,获得积分10
15秒前
钠钾蹦发布了新的文献求助10
16秒前
ww发布了新的文献求助10
16秒前
zyj发布了新的文献求助10
16秒前
太渊完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642882
求助须知:如何正确求助?哪些是违规求助? 4760127
关于积分的说明 15019330
捐赠科研通 4801400
什么是DOI,文献DOI怎么找? 2566683
邀请新用户注册赠送积分活动 1524598
关于科研通互助平台的介绍 1484211