TG468: a text graph convolutional network for predicting clinical response to immune checkpoint inhibitor therapy

计算机科学 外显子组 外显子组测序 人工智能 机器学习 卷积神经网络 计算生物学 免疫检查点 免疫疗法 免疫系统 医学 基因 生物 免疫学 突变 生物化学
作者
Kun Wang,Jiangshan Shi,Xiaochu Tong,Ning Qu,Xiangtai Kong,Shengkun Ni,Jing Xing,Xutong Li,Mingyue Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae017
摘要

Abstract Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468’s prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model’s predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
electromx发布了新的文献求助20
1秒前
高贵焦发布了新的文献求助10
1秒前
充电宝应助SYS采纳,获得10
1秒前
昼夜本色发布了新的文献求助10
1秒前
目光之澄发布了新的文献求助10
1秒前
1秒前
xiliii发布了新的文献求助10
1秒前
2秒前
yang666完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
大模型应助maybe豪采纳,获得10
3秒前
华仔应助风清扬采纳,获得10
3秒前
as完成签到,获得积分10
3秒前
打打应助kaiqiang采纳,获得10
4秒前
黄诺雪发布了新的文献求助10
4秒前
4秒前
lvlv发布了新的文献求助10
4秒前
4秒前
moxin发布了新的文献求助10
4秒前
4秒前
善学以致用应助Cheney采纳,获得10
5秒前
希望天下0贩的0应助陈彪采纳,获得10
5秒前
5秒前
5秒前
biubiu完成签到,获得积分10
5秒前
5秒前
6秒前
123发布了新的文献求助10
6秒前
wu完成签到 ,获得积分10
7秒前
整齐碧玉发布了新的文献求助10
7秒前
hia发布了新的文献求助20
7秒前
Orange应助呼吸自然采纳,获得10
7秒前
7秒前
在水一方应助下次一定采纳,获得10
7秒前
寻道图强应助宁阿霜采纳,获得50
7秒前
ZL完成签到,获得积分10
7秒前
谢皮皮发布了新的文献求助10
8秒前
外向的冷雪完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807