TG468: a text graph convolutional network for predicting clinical response to immune checkpoint inhibitor therapy

计算机科学 外显子组 外显子组测序 人工智能 机器学习 卷积神经网络 计算生物学 免疫检查点 免疫疗法 免疫系统 医学 基因 生物 免疫学 突变 生物化学
作者
Kun Wang,Jiangshan Shi,Xiaochu Tong,Ning Qu,Xiangtai Kong,Shengkun Ni,Jing Xing,Xutong Li,Mingyue Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae017
摘要

Abstract Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468’s prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model’s predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叨叨完成签到,获得积分10
刚刚
刚刚
每每反完成签到,获得积分10
1秒前
王卫完成签到,获得积分10
1秒前
干净访烟发布了新的文献求助10
1秒前
1秒前
深情安青应助结实的德地采纳,获得10
1秒前
Orange应助结实的德地采纳,获得10
1秒前
2秒前
2秒前
2秒前
3秒前
小赵完成签到,获得积分20
3秒前
3秒前
马大帅完成签到,获得积分10
4秒前
孤单的您发布了新的文献求助10
4秒前
科研通AI6应助1111采纳,获得10
4秒前
大胆的飞荷完成签到,获得积分10
4秒前
意难平完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
科研通AI6应助VV采纳,获得10
6秒前
6秒前
6秒前
aikeyan完成签到,获得积分10
6秒前
Akim应助Steve采纳,获得10
7秒前
桐桐应助糖_采纳,获得10
7秒前
7秒前
深情安青应助亮亮亮采纳,获得10
7秒前
阿郭发布了新的文献求助10
8秒前
CUI发布了新的文献求助10
8秒前
麦子应助叨叨采纳,获得10
8秒前
8秒前
科科完成签到,获得积分10
8秒前
魏一鸣发布了新的文献求助10
9秒前
留胡子的南露完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441