TG468: a text graph convolutional network for predicting clinical response to immune checkpoint inhibitor therapy

计算机科学 外显子组 外显子组测序 人工智能 机器学习 卷积神经网络 计算生物学 免疫检查点 免疫疗法 免疫系统 医学 基因 生物 免疫学 突变 生物化学
作者
Kun Wang,Jiangshan Shi,Xiaochu Tong,Ning Qu,Xiangtai Kong,Shengkun Ni,Jing Xing,Xutong Li,Mingyue Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae017
摘要

Abstract Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468’s prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model’s predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
予你发布了新的文献求助10
刚刚
刚刚
大模型应助甜美罢了采纳,获得10
刚刚
刚刚
Walden发布了新的文献求助20
1秒前
姜玲完成签到,获得积分10
1秒前
糖豆发布了新的文献求助10
1秒前
花椒发布了新的文献求助10
1秒前
Sakura发布了新的文献求助10
1秒前
wxl19发布了新的文献求助30
1秒前
大晟归来完成签到,获得积分10
1秒前
1秒前
无心的仙人掌完成签到,获得积分10
1秒前
学术脑袋发布了新的文献求助10
2秒前
2秒前
shaonanli1984发布了新的文献求助10
2秒前
xiaoxiao完成签到,获得积分10
2秒前
3秒前
yyy发布了新的文献求助10
3秒前
3秒前
无花果应助闪闪采纳,获得10
3秒前
3秒前
3秒前
爱低温的啊陈完成签到,获得积分10
3秒前
TFboy发布了新的文献求助10
3秒前
3秒前
4秒前
小金发布了新的文献求助10
4秒前
4秒前
lucky发布了新的文献求助10
4秒前
英俊的铭应助旅行的天空采纳,获得10
4秒前
5秒前
5秒前
小蘑菇应助xy采纳,获得10
5秒前
5秒前
kanoz完成签到,获得积分10
5秒前
herschelwu完成签到,获得积分10
5秒前
huaming发布了新的文献求助10
5秒前
6秒前
6秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619653
求助须知:如何正确求助?哪些是违规求助? 4704273
关于积分的说明 14927050
捐赠科研通 4760246
什么是DOI,文献DOI怎么找? 2550622
邀请新用户注册赠送积分活动 1513424
关于科研通互助平台的介绍 1474450