TG468: a text graph convolutional network for predicting clinical response to immune checkpoint inhibitor therapy

计算机科学 外显子组 外显子组测序 人工智能 机器学习 卷积神经网络 计算生物学 免疫检查点 免疫疗法 免疫系统 医学 基因 生物 免疫学 突变 生物化学
作者
Kun Wang,Jiangshan Shi,Xiaochu Tong,Ning Qu,Xiangtai Kong,Shengkun Ni,Jing Xing,Xutong Li,Mingyue Zheng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae017
摘要

Abstract Enhancing cancer treatment efficacy remains a significant challenge in human health. Immunotherapy has witnessed considerable success in recent years as a treatment for tumors. However, due to the heterogeneity of diseases, only a fraction of patients exhibit a positive response to immune checkpoint inhibitor (ICI) therapy. Various single-gene-based biomarkers and tumor mutational burden (TMB) have been proposed for predicting clinical responses to ICI; however, their predictive ability is limited. We propose the utilization of the Text Graph Convolutional Network (GCN) method to comprehensively assess the impact of multiple genes, aiming to improve the predictive capability for ICI response. We developed TG468, a Text GCN model framing drug response prediction as a text classification task. By combining natural language processing (NLP) and graph neural network techniques, TG468 effectively handles sparse and high-dimensional exome sequencing data. As a result, TG468 can distinguish survival time for patients who received ICI therapy and outperforms single gene biomarkers, TMB and some classical machine learning models. Additionally, TG468’s prediction results facilitate the identification of immune status differences among specific patient types in the Cancer Genome Atlas dataset, providing a rationale for the model’s predictions. Our approach represents a pioneering use of a GCN model to analyze exome data in patients undergoing ICI therapy and offers inspiration for future research using NLP technology to analyze exome sequencing data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
社会主义接班人完成签到 ,获得积分10
刚刚
1秒前
1秒前
还减肥呢完成签到 ,获得积分10
2秒前
2秒前
YX发布了新的文献求助10
3秒前
Ziang_Liu完成签到 ,获得积分10
3秒前
可爱的函函应助yaoyao采纳,获得10
3秒前
美好的邴完成签到 ,获得积分10
4秒前
典雅的幼枫关注了科研通微信公众号
4秒前
情怀应助王晓婷采纳,获得10
4秒前
4秒前
窝窝头完成签到 ,获得积分10
6秒前
传奇3应助YX采纳,获得10
8秒前
水煮牛牛完成签到,获得积分10
8秒前
Criminology34应助anan采纳,获得10
9秒前
10秒前
稳重的凡桃完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
踏实白昼发布了新的文献求助10
11秒前
千珏关注了科研通微信公众号
13秒前
vagary完成签到,获得积分10
14秒前
14秒前
14秒前
Jasper应助lwl采纳,获得10
15秒前
16秒前
漂亮的寄真完成签到,获得积分10
16秒前
17秒前
背后的语海完成签到 ,获得积分10
18秒前
18秒前
淼焱发布了新的文献求助10
18秒前
19秒前
科研通AI6.1应助zbzfp采纳,获得10
20秒前
txxy发布了新的文献求助10
20秒前
20秒前
曦越完成签到 ,获得积分10
21秒前
善学以致用应助拓跋涵易采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778805
求助须知:如何正确求助?哪些是违规求助? 5643873
关于积分的说明 15450364
捐赠科研通 4910324
什么是DOI,文献DOI怎么找? 2642617
邀请新用户注册赠送积分活动 1590360
关于科研通互助平台的介绍 1544705