Mixtures Recomposition by Neural Nets: A Multidisciplinary Overview

人工神经网络 人工智能 机器学习 背景(考古学) 化学空间 计算机科学 化学 生物 生物化学 药物发现 古生物学
作者
André Nicolle,Sili Deng,Matthias Ihme,Nursulu Kuzhagaliyeva,Emad Al Ibrahim,Aamir Farooq
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (3): 597-620 被引量:1
标识
DOI:10.1021/acs.jcim.3c01633
摘要

Artificial Neural Networks (ANNs) are transforming how we understand chemical mixtures, providing an expressive view of the chemical space and multiscale processes. Their hybridization with physical knowledge can bridge the gap between predictivity and understanding of the underlying processes. This overview explores recent progress in ANNs, particularly their potential in the 'recomposition' of chemical mixtures. Graph-based representations reveal patterns among mixture components, and deep learning models excel in capturing complexity and symmetries when compared to traditional Quantitative Structure-Property Relationship models. Key components, such as Hamiltonian networks and convolution operations, play a central role in representing multiscale mixtures. The integration of ANNs with Chemical Reaction Networks and Physics-Informed Neural Networks for inverse chemical kinetic problems is also examined. The combination of sensors with ANNs shows promise in optical and biomimetic applications. A common ground is identified in the context of statistical physics, where ANN-based methods iteratively adapt their models by blending their initial states with training data. The concept of mixture recomposition unveils a reciprocal inspiration between ANNs and reactive mixtures, highlighting learning behaviors influenced by the training environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一条小鱼发布了新的文献求助10
刚刚
灿guo完成签到,获得积分10
刚刚
1秒前
彭于晏应助chen采纳,获得10
1秒前
1秒前
Sweet发布了新的文献求助10
2秒前
慕青应助upsoar采纳,获得10
2秒前
2秒前
xingyi完成签到,获得积分10
2秒前
song发布了新的文献求助10
2秒前
2秒前
轮回1奇点发布了新的文献求助10
2秒前
英勇的新瑶完成签到,获得积分10
3秒前
随性随缘随命完成签到 ,获得积分10
3秒前
安静的从梦完成签到 ,获得积分10
3秒前
Aleioy完成签到,获得积分10
3秒前
nidhhog发布了新的文献求助10
3秒前
摸鱼主编magazine完成签到,获得积分0
4秒前
在水一方应助xdy1990采纳,获得10
4秒前
4秒前
情怀应助灿guo采纳,获得10
4秒前
4秒前
4秒前
浅音发布了新的文献求助10
4秒前
鲤鱼酸奶发布了新的文献求助10
5秒前
安心发布了新的文献求助10
5秒前
传奇3应助哈哈Ye采纳,获得10
5秒前
善学以致用应助zaphkiel采纳,获得10
5秒前
美好的黛丝完成签到,获得积分10
5秒前
Zx_1993应助淡然枫采纳,获得10
6秒前
drizzling发布了新的文献求助10
6秒前
6秒前
啥都懂发布了新的文献求助10
6秒前
积木123完成签到,获得积分10
6秒前
冷冷子发布了新的文献求助10
7秒前
我爱读文献完成签到,获得积分10
7秒前
常大美女发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581731
求助须知:如何正确求助?哪些是违规求助? 4665950
关于积分的说明 14759751
捐赠科研通 4607883
什么是DOI,文献DOI怎么找? 2528410
邀请新用户注册赠送积分活动 1497684
关于科研通互助平台的介绍 1466564