A clustering and graph deep learning-based framework for COVID-19 drug repurposing

药物重新定位 计算机科学 重新调整用途 2019年冠状病毒病(COVID-19) 聚类分析 人工智能 图形 机器学习 药品 理论计算机科学 医学 药理学 传染病(医学专业) 生态学 疾病 病理 生物
作者
Chaarvi Bansal,Perinkulam Ravi Deepa,Vinti Agarwal,Rohitash Chandra
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123560-123560
标识
DOI:10.1016/j.eswa.2024.123560
摘要

Drug repurposing (or repositioning) is the process of finding new therapeutic uses for drugs already approved by drug regulatory authorities (e.g., the Food and Drug Administration (FDA) and Therapeutic Goods Administration (TGA)) for other diseases. This involves analysing the interactions between different biological entities, such as drug targets (genes/proteins and biological pathways) and drug properties, to discover novel drug–target or drug–disease relations. Machine learning and deep learning models have successfully analysed complex heterogeneous data with applications in the biomedical domain, and have also been used for drug repurposing. This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data. The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19 (category A). The rest are systematically filtered to ensure the safety and efficacy of the treatment (category B). The framework solely relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays. Our machine-learning framework revealed three clusters of interest and provided recommendations featuring the top 15 drugs for COVID-19 drug repurposing, which were shortlisted based on the predicted clusters that were dominated by category A drugs. Our framework can be extended to support other datasets and drug repurposing studies with the availability of our open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清冷渊完成签到 ,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
leaolf应助科研通管家采纳,获得150
1秒前
mrconli完成签到,获得积分10
1秒前
aldehyde应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
淡然的妙芙应助科研通管家采纳,获得150
2秒前
leaolf应助科研通管家采纳,获得20
2秒前
2秒前
落寞的幻竹完成签到,获得积分10
3秒前
ldr888完成签到,获得积分10
3秒前
sidashu完成签到,获得积分10
13秒前
心想事成完成签到 ,获得积分10
13秒前
如意竺完成签到,获得积分10
15秒前
Sunyidan完成签到,获得积分10
17秒前
吃鲨鱼的小虾米完成签到 ,获得积分10
19秒前
q1nzang完成签到 ,获得积分10
21秒前
ryan1300完成签到 ,获得积分10
27秒前
文献狗完成签到,获得积分10
30秒前
Present完成签到,获得积分10
32秒前
123123完成签到 ,获得积分10
35秒前
OmniQuan完成签到,获得积分10
36秒前
尔信完成签到 ,获得积分10
41秒前
wBw完成签到,获得积分0
44秒前
刘丰完成签到 ,获得积分10
46秒前
51秒前
56秒前
沉静的清涟完成签到,获得积分10
1分钟前
was_3完成签到,获得积分0
1分钟前
1分钟前
小路发布了新的文献求助20
1分钟前
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
个性寒梦完成签到 ,获得积分10
1分钟前
Binbin完成签到 ,获得积分10
1分钟前
叶子完成签到,获得积分10
1分钟前
1分钟前
kusicfack完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304052
求助须知:如何正确求助?哪些是违规求助? 4450666
关于积分的说明 13849594
捐赠科研通 4337544
什么是DOI,文献DOI怎么找? 2381497
邀请新用户注册赠送积分活动 1376527
关于科研通互助平台的介绍 1343426