A clustering and graph deep learning-based framework for COVID-19 drug repurposing

药物重新定位 计算机科学 重新调整用途 2019年冠状病毒病(COVID-19) 聚类分析 人工智能 图形 机器学习 药品 理论计算机科学 医学 药理学 传染病(医学专业) 生态学 疾病 病理 生物
作者
Chaarvi Bansal,Perinkulam Ravi Deepa,Vinti Agarwal,Rohitash Chandra
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123560-123560
标识
DOI:10.1016/j.eswa.2024.123560
摘要

Drug repurposing (or repositioning) is the process of finding new therapeutic uses for drugs already approved by drug regulatory authorities (e.g., the Food and Drug Administration (FDA) and Therapeutic Goods Administration (TGA)) for other diseases. This involves analysing the interactions between different biological entities, such as drug targets (genes/proteins and biological pathways) and drug properties, to discover novel drug–target or drug–disease relations. Machine learning and deep learning models have successfully analysed complex heterogeneous data with applications in the biomedical domain, and have also been used for drug repurposing. This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data. The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19 (category A). The rest are systematically filtered to ensure the safety and efficacy of the treatment (category B). The framework solely relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays. Our machine-learning framework revealed three clusters of interest and provided recommendations featuring the top 15 drugs for COVID-19 drug repurposing, which were shortlisted based on the predicted clusters that were dominated by category A drugs. Our framework can be extended to support other datasets and drug repurposing studies with the availability of our open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助MX001采纳,获得10
1秒前
zzzzzzzz应助zifeimo采纳,获得10
1秒前
一直向前发布了新的文献求助10
2秒前
2秒前
2秒前
ding应助狂野世立采纳,获得10
2秒前
4秒前
乐乐应助XHW采纳,获得10
4秒前
4秒前
我爱吃泡面完成签到,获得积分10
5秒前
不良帅完成签到,获得积分10
6秒前
赘婿应助于水清采纳,获得10
6秒前
6秒前
欧阳欢完成签到,获得积分10
7秒前
清脆南蕾完成签到,获得积分10
7秒前
7秒前
遇上就这样吧给尽如的求助进行了留言
7秒前
Always完成签到,获得积分10
7秒前
Winfred完成签到,获得积分10
9秒前
刚睡醒发布了新的文献求助10
10秒前
11秒前
11秒前
天天快乐应助研友_LBaaX8采纳,获得10
12秒前
12秒前
能干的邹完成签到 ,获得积分10
12秒前
MX001发布了新的文献求助10
12秒前
七曜完成签到,获得积分20
14秒前
14秒前
cyz完成签到,获得积分10
14秒前
邓大发啦啦啦完成签到,获得积分20
15秒前
15秒前
18秒前
第七个太阳完成签到,获得积分10
18秒前
愤怒的稀发布了新的文献求助10
18秒前
19秒前
ex_ritian完成签到,获得积分10
19秒前
oasis完成签到,获得积分10
21秒前
21秒前
abtx314发布了新的文献求助10
21秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014