A clustering and graph deep learning-based framework for COVID-19 drug repurposing

药物重新定位 计算机科学 重新调整用途 2019年冠状病毒病(COVID-19) 聚类分析 人工智能 图形 机器学习 药品 理论计算机科学 医学 药理学 传染病(医学专业) 生物 病理 疾病 生态学
作者
Chaarvi Bansal,Perinkulam Ravi Deepa,Vinti Agarwal,Rohitash Chandra
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123560-123560
标识
DOI:10.1016/j.eswa.2024.123560
摘要

Drug repurposing (or repositioning) is the process of finding new therapeutic uses for drugs already approved by drug regulatory authorities (e.g., the Food and Drug Administration (FDA) and Therapeutic Goods Administration (TGA)) for other diseases. This involves analysing the interactions between different biological entities, such as drug targets (genes/proteins and biological pathways) and drug properties, to discover novel drug–target or drug–disease relations. Machine learning and deep learning models have successfully analysed complex heterogeneous data with applications in the biomedical domain, and have also been used for drug repurposing. This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data. The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19 (category A). The rest are systematically filtered to ensure the safety and efficacy of the treatment (category B). The framework solely relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays. Our machine-learning framework revealed three clusters of interest and provided recommendations featuring the top 15 drugs for COVID-19 drug repurposing, which were shortlisted based on the predicted clusters that were dominated by category A drugs. Our framework can be extended to support other datasets and drug repurposing studies with the availability of our open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
思源应助蟹黄堡不打折采纳,获得10
2秒前
Lily应助科研通管家采纳,获得40
2秒前
敬老院N号应助科研通管家采纳,获得30
2秒前
zzzq应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
皮皮完成签到 ,获得积分10
2秒前
sallltyyy发布了新的文献求助10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
QPP完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
喜悦中道应助科研通管家采纳,获得10
2秒前
wzxxxx发布了新的文献求助10
3秒前
冬瓜炖排骨完成签到,获得积分10
3秒前
6666发布了新的文献求助10
3秒前
BB发布了新的文献求助10
4秒前
冷静雅青完成签到 ,获得积分10
5秒前
打打应助zhui采纳,获得10
5秒前
5秒前
科研通AI5应助xiu采纳,获得10
5秒前
6秒前
7秒前
William鉴哲完成签到,获得积分10
7秒前
神奇科研圆完成签到,获得积分10
7秒前
7秒前
biomds完成签到,获得积分10
7秒前
7秒前
8秒前
乐乐应助huifang采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794