A clustering and graph deep learning-based framework for COVID-19 drug repurposing

药物重新定位 计算机科学 重新调整用途 2019年冠状病毒病(COVID-19) 聚类分析 人工智能 图形 机器学习 药品 理论计算机科学 医学 药理学 传染病(医学专业) 生态学 疾病 病理 生物
作者
Chaarvi Bansal,Perinkulam Ravi Deepa,Vinti Agarwal,Rohitash Chandra
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123560-123560
标识
DOI:10.1016/j.eswa.2024.123560
摘要

Drug repurposing (or repositioning) is the process of finding new therapeutic uses for drugs already approved by drug regulatory authorities (e.g., the Food and Drug Administration (FDA) and Therapeutic Goods Administration (TGA)) for other diseases. This involves analysing the interactions between different biological entities, such as drug targets (genes/proteins and biological pathways) and drug properties, to discover novel drug–target or drug–disease relations. Machine learning and deep learning models have successfully analysed complex heterogeneous data with applications in the biomedical domain, and have also been used for drug repurposing. This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data. The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19 (category A). The rest are systematically filtered to ensure the safety and efficacy of the treatment (category B). The framework solely relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays. Our machine-learning framework revealed three clusters of interest and provided recommendations featuring the top 15 drugs for COVID-19 drug repurposing, which were shortlisted based on the predicted clusters that were dominated by category A drugs. Our framework can be extended to support other datasets and drug repurposing studies with the availability of our open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunrase发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
yuan发布了新的文献求助10
1秒前
WSYang完成签到,获得积分10
1秒前
1秒前
完美世界应助1234567890采纳,获得10
2秒前
2秒前
2秒前
爱吃烤肉的兔子完成签到,获得积分20
2秒前
3秒前
善学以致用应助阔达冷荷采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
愚柳发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
五七完成签到,获得积分10
6秒前
Shan5完成签到,获得积分10
7秒前
7秒前
ziyu完成签到,获得积分10
7秒前
8秒前
ares-gxd发布了新的文献求助10
8秒前
Zhang发布了新的文献求助10
8秒前
烟花应助练大金采纳,获得10
8秒前
8秒前
8秒前
yanzi发布了新的文献求助10
9秒前
慕青应助mufulee采纳,获得30
9秒前
9秒前
lingyu完成签到,获得积分10
10秒前
10秒前
wangyf完成签到,获得积分10
10秒前
10秒前
Orange应助xun采纳,获得200
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871