A clustering and graph deep learning-based framework for COVID-19 drug repurposing

药物重新定位 计算机科学 重新调整用途 2019年冠状病毒病(COVID-19) 聚类分析 人工智能 图形 机器学习 药品 理论计算机科学 医学 药理学 传染病(医学专业) 生物 病理 疾病 生态学
作者
Chaarvi Bansal,Perinkulam Ravi Deepa,Vinti Agarwal,Rohitash Chandra
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123560-123560
标识
DOI:10.1016/j.eswa.2024.123560
摘要

Drug repurposing (or repositioning) is the process of finding new therapeutic uses for drugs already approved by drug regulatory authorities (e.g., the Food and Drug Administration (FDA) and Therapeutic Goods Administration (TGA)) for other diseases. This involves analysing the interactions between different biological entities, such as drug targets (genes/proteins and biological pathways) and drug properties, to discover novel drug–target or drug–disease relations. Machine learning and deep learning models have successfully analysed complex heterogeneous data with applications in the biomedical domain, and have also been used for drug repurposing. This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data. The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19 (category A). The rest are systematically filtered to ensure the safety and efficacy of the treatment (category B). The framework solely relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays. Our machine-learning framework revealed three clusters of interest and provided recommendations featuring the top 15 drugs for COVID-19 drug repurposing, which were shortlisted based on the predicted clusters that were dominated by category A drugs. Our framework can be extended to support other datasets and drug repurposing studies with the availability of our open-source code.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyle发布了新的文献求助10
刚刚
Snoopy发布了新的文献求助10
1秒前
sg123_发布了新的文献求助10
2秒前
NexusExplorer应助小高采纳,获得10
2秒前
无花果应助QQ采纳,获得10
2秒前
jiyuan发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助10
2秒前
Mobitz发布了新的文献求助20
3秒前
3秒前
3秒前
不想做实验完成签到,获得积分10
4秒前
群山完成签到 ,获得积分10
4秒前
4秒前
wanci应助苏silence采纳,获得10
4秒前
红桃K完成签到,获得积分10
5秒前
Stella应助炙热的天菱采纳,获得20
5秒前
黑白菜完成签到,获得积分10
5秒前
小谭完成签到 ,获得积分10
6秒前
dew应助柠檬普洱茶采纳,获得50
6秒前
Amdies完成签到,获得积分10
6秒前
dew应助朵朵采纳,获得10
7秒前
xxy完成签到,获得积分10
7秒前
guoguo发布了新的文献求助10
7秒前
7秒前
肉鸡应助Sea_U采纳,获得50
7秒前
阿庆完成签到,获得积分10
8秒前
一只肥牛完成签到,获得积分10
8秒前
8秒前
8秒前
vvvvv发布了新的文献求助10
9秒前
吴龙完成签到,获得积分10
9秒前
9秒前
10秒前
倦鸟余花完成签到,获得积分10
10秒前
10秒前
茫123456完成签到,获得积分10
12秒前
12秒前
winner发布了新的文献求助10
12秒前
12秒前
邮寄短诗发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034