A clustering and graph deep learning-based framework for COVID-19 drug repurposing

药物重新定位 计算机科学 重新调整用途 2019年冠状病毒病(COVID-19) 聚类分析 人工智能 图形 机器学习 药品 理论计算机科学 医学 药理学 传染病(医学专业) 生物 病理 疾病 生态学
作者
Chaarvi Bansal,Perinkulam Ravi Deepa,Vinti Agarwal,Rohitash Chandra
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123560-123560
标识
DOI:10.1016/j.eswa.2024.123560
摘要

Drug repurposing (or repositioning) is the process of finding new therapeutic uses for drugs already approved by drug regulatory authorities (e.g., the Food and Drug Administration (FDA) and Therapeutic Goods Administration (TGA)) for other diseases. This involves analysing the interactions between different biological entities, such as drug targets (genes/proteins and biological pathways) and drug properties, to discover novel drug–target or drug–disease relations. Machine learning and deep learning models have successfully analysed complex heterogeneous data with applications in the biomedical domain, and have also been used for drug repurposing. This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data. The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19 (category A). The rest are systematically filtered to ensure the safety and efficacy of the treatment (category B). The framework solely relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays. Our machine-learning framework revealed three clusters of interest and provided recommendations featuring the top 15 drugs for COVID-19 drug repurposing, which were shortlisted based on the predicted clusters that were dominated by category A drugs. Our framework can be extended to support other datasets and drug repurposing studies with the availability of our open-source code.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的若男完成签到 ,获得积分10
1秒前
Hello应助naturehome采纳,获得10
1秒前
2秒前
带线一去不回完成签到,获得积分10
2秒前
zzzzz完成签到,获得积分10
2秒前
袁大头发布了新的文献求助10
3秒前
时光中的微粒完成签到 ,获得积分10
3秒前
4秒前
HM发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助平常语堂采纳,获得10
5秒前
Ky_Mac应助xudanhong采纳,获得30
5秒前
Orange应助年糕菌采纳,获得30
5秒前
orixero应助大力的诗蕾采纳,获得10
6秒前
cc发布了新的文献求助10
7秒前
英俊的铭应助auggy采纳,获得10
7秒前
7秒前
7秒前
在水一方应助今晚雨很大采纳,获得10
7秒前
着急的小猫咪完成签到 ,获得积分10
8秒前
9秒前
泡泡茶壶发布了新的文献求助10
9秒前
天将明完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
12木发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
11秒前
呆萌听兰发布了新的文献求助10
11秒前
SciGPT应助HM采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
ZZ完成签到,获得积分10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
大龙哥886应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
大龙哥886应助科研通管家采纳,获得10
13秒前
naturehome发布了新的文献求助10
13秒前
田様应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729522
求助须知:如何正确求助?哪些是违规求助? 5319062
关于积分的说明 15316881
捐赠科研通 4876547
什么是DOI,文献DOI怎么找? 2619420
邀请新用户注册赠送积分活动 1568947
关于科研通互助平台的介绍 1525532