A clustering and graph deep learning-based framework for COVID-19 drug repurposing

药物重新定位 计算机科学 重新调整用途 2019年冠状病毒病(COVID-19) 聚类分析 人工智能 图形 机器学习 药品 理论计算机科学 医学 药理学 传染病(医学专业) 生态学 疾病 病理 生物
作者
Chaarvi Bansal,Perinkulam Ravi Deepa,Vinti Agarwal,Rohitash Chandra
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123560-123560
标识
DOI:10.1016/j.eswa.2024.123560
摘要

Drug repurposing (or repositioning) is the process of finding new therapeutic uses for drugs already approved by drug regulatory authorities (e.g., the Food and Drug Administration (FDA) and Therapeutic Goods Administration (TGA)) for other diseases. This involves analysing the interactions between different biological entities, such as drug targets (genes/proteins and biological pathways) and drug properties, to discover novel drug–target or drug–disease relations. Machine learning and deep learning models have successfully analysed complex heterogeneous data with applications in the biomedical domain, and have also been used for drug repurposing. This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data. The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19 (category A). The rest are systematically filtered to ensure the safety and efficacy of the treatment (category B). The framework solely relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays. Our machine-learning framework revealed three clusters of interest and provided recommendations featuring the top 15 drugs for COVID-19 drug repurposing, which were shortlisted based on the predicted clusters that were dominated by category A drugs. Our framework can be extended to support other datasets and drug repurposing studies with the availability of our open-source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天宇建清完成签到,获得积分10
1秒前
CR完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
科研通AI2S应助Tang采纳,获得10
5秒前
6秒前
8秒前
9秒前
幽默的雨珍完成签到,获得积分10
9秒前
Hello应助哈哈哈采纳,获得10
10秒前
12秒前
EvaHo发布了新的文献求助10
12秒前
橙子发布了新的文献求助50
12秒前
鱼的宇宙发布了新的文献求助10
13秒前
18秒前
19秒前
kise完成签到,获得积分10
19秒前
ANT完成签到 ,获得积分10
22秒前
jfaioe发布了新的文献求助10
24秒前
清风明月发布了新的文献求助10
25秒前
xinyingking完成签到,获得积分10
25秒前
脑洞疼应助阿治采纳,获得10
26秒前
互助遵法尚德应助fei采纳,获得10
28秒前
高挑的紫安完成签到 ,获得积分10
29秒前
29秒前
不许放羊完成签到 ,获得积分10
30秒前
细心的语蓉完成签到,获得积分10
30秒前
打打应助笑傲采纳,获得10
32秒前
义气绿柳发布了新的文献求助10
33秒前
香蕉觅云应助科研通管家采纳,获得10
38秒前
852应助科研通管家采纳,获得10
38秒前
oceanao应助科研通管家采纳,获得10
39秒前
充电宝应助科研通管家采纳,获得10
39秒前
共享精神应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
39秒前
CipherSage应助优雅的迎彤采纳,获得10
39秒前
wrx完成签到,获得积分10
43秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228