Machine learning-based classification and risk factor analysis of frailty in Korean community-dwelling older adults

随机森林 朴素贝叶斯分类器 机器学习 逻辑回归 支持向量机 人工智能 计算机科学 重采样 特征选择 医学
作者
Heeeun Jung,Miji Kim,Chang Won Won,Jin–Wook Kim,Kyung-Ryoul Mun
标识
DOI:10.1109/embc40787.2023.10340229
摘要

Frailty is a dynamic reversible state, characterized by frequent transitions between frailty status over time. The timely and effective detection of frailty is important to prevent adverse health outcomes. This study aims to develop machine learning-based classification models for frailty assessment and to investigate its risk factors. A total of 1,482 subjects, 1,266 robust and 216 frail older adults, were analyzed. Sixteen frail risk factors were selected from a random forest-based feature selection method, then used for the inputs of five ML models: logistic regression, K-nearest neighbor, support vector machine, gaussian naïve bayes, and random forest. Data resampling, stratified 10-fold cross-validation, and grid search were applied to improve the classification performance. The logistic regression model using the selected features showed the best performance with an accuracy of 0.93 and an F 1 -score of 0.92. The results suggest that machine learning techniques are an effective method for classifying frailty status and exploring frailty-related factors.Clinical Relevance— Our approach can predict frailty using data collectable in clinical setting and can help prevent and improve by identifying variables that change frailty status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
印象完成签到,获得积分10
1秒前
囧囧有妖完成签到,获得积分10
2秒前
慧慧完成签到,获得积分20
2秒前
猴猴完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
852应助闷闷采纳,获得10
3秒前
4秒前
4秒前
4秒前
慧慧发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助Chelry采纳,获得10
6秒前
爱笑夜蕾发布了新的文献求助10
7秒前
yile完成签到,获得积分10
7秒前
流砂完成签到,获得积分10
7秒前
7秒前
七月流火应助CHENHAHA采纳,获得50
8秒前
李想完成签到,获得积分20
8秒前
8秒前
林子青完成签到,获得积分10
9秒前
9秒前
9秒前
Hepatology完成签到,获得积分10
9秒前
火星上的觅山完成签到,获得积分10
10秒前
英姑应助科研通管家采纳,获得10
11秒前
djiwisksk66应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
李健应助老唐采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
平淡山柏应助科研通管家采纳,获得30
11秒前
踏实问晴完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
12秒前
Ting完成签到 ,获得积分10
12秒前
12秒前
ding应助科研通管家采纳,获得30
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958393
求助须知:如何正确求助?哪些是违规求助? 3504692
关于积分的说明 11119524
捐赠科研通 3235856
什么是DOI,文献DOI怎么找? 1788584
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802605