Machine learning-based classification and risk factor analysis of frailty in Korean community-dwelling older adults

随机森林 朴素贝叶斯分类器 机器学习 逻辑回归 支持向量机 人工智能 计算机科学 重采样 特征选择 医学
作者
Heeeun Jung,Miji Kim,Chang Won Won,Jin‐Wook Kim,Kyung-Ryoul Mun
标识
DOI:10.1109/embc40787.2023.10340229
摘要

Frailty is a dynamic reversible state, characterized by frequent transitions between frailty status over time. The timely and effective detection of frailty is important to prevent adverse health outcomes. This study aims to develop machine learning-based classification models for frailty assessment and to investigate its risk factors. A total of 1,482 subjects, 1,266 robust and 216 frail older adults, were analyzed. Sixteen frail risk factors were selected from a random forest-based feature selection method, then used for the inputs of five ML models: logistic regression, K-nearest neighbor, support vector machine, gaussian naïve bayes, and random forest. Data resampling, stratified 10-fold cross-validation, and grid search were applied to improve the classification performance. The logistic regression model using the selected features showed the best performance with an accuracy of 0.93 and an F 1 -score of 0.92. The results suggest that machine learning techniques are an effective method for classifying frailty status and exploring frailty-related factors.Clinical Relevance— Our approach can predict frailty using data collectable in clinical setting and can help prevent and improve by identifying variables that change frailty status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zxx发布了新的文献求助10
刚刚
张张完成签到,获得积分10
刚刚
KING发布了新的文献求助10
1秒前
贝贝完成签到,获得积分10
1秒前
1秒前
情怀应助zz采纳,获得10
1秒前
jy完成签到,获得积分10
1秒前
1秒前
落崽完成签到,获得积分10
2秒前
CipherSage应助化学小白采纳,获得10
3秒前
kx完成签到,获得积分10
3秒前
乐乐应助kqd采纳,获得10
3秒前
姿姿发布了新的文献求助10
3秒前
vinh发布了新的文献求助10
3秒前
4秒前
无极微光应助无尘泪采纳,获得20
4秒前
思源应助无情妙菡采纳,获得10
4秒前
嘿嘿发布了新的文献求助10
4秒前
科研通AI6应助大胆的白卉采纳,获得10
4秒前
星际帅帅完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
无所谓完成签到,获得积分10
5秒前
5秒前
5秒前
Annlucy完成签到 ,获得积分10
5秒前
6秒前
完美世界应助faye采纳,获得10
6秒前
6秒前
可爱的函函应助月蚀六花采纳,获得30
6秒前
6秒前
阳光沛柔完成签到,获得积分10
7秒前
无极微光应助老头采纳,获得30
7秒前
8秒前
8秒前
啊啊完成签到,获得积分10
8秒前
8秒前
王圈发布了新的文献求助10
8秒前
ding应助兰金采纳,获得10
8秒前
大模型应助zhuzhu采纳,获得10
9秒前
Lily1983完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668