A Lightweight Convolutional Neural Network for Ship Target Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 特征提取 卷积(计算机科学) 卷积神经网络 块(置换群论) 棱锥(几何) 特征(语言学) 计算机视觉 模式识别(心理学) 雷达成像 雷达 图像分割 分割 人工神经网络 电信 数学 语言学 哲学 几何学
作者
Yisheng Hao,Ying Zhang
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:60 (2): 1882-1898 被引量:1
标识
DOI:10.1109/taes.2023.3344396
摘要

Synthetic aperture radar (SAR), due to its merits of all-day, all-weather, and high resolution, has become an important component of radar research. Target detection is a significant basis for radar image interpretation. Aiming at the problems, such as low accuracy and high complexity of traditional convolutional neural network in SAR ship target detection, which is not conducive to the deployment of terminal equipment, we proposed a lightweight network for SAR image ship target detection based on the latest anchor-free algorithm YOLOX. First, we redesign a novel lightweight block with stronger feature fusion ability, namely, MobileNetV3S. On the basis of MobileNetV3S, we combine Cross Stage Partial Network to construct a lightweight backbone. Second, in order to improve the ability of multiscale feature extraction, we propose a new module based on dilated convolution with different dilated rates and Efficient Spatial Pyramid Network. Furthermore, we adopt convolutional block attentional module to optimize traditional YOLOX's Feature Pyramid Network, and propose a lightweight enhanced feature extraction module, which can improve the focusing ability of important targets. For detection head, the depth-separable convolution is also applied to reduce the network's parameters. Finally, in terms of loss function, we abandon the traditional Intersection over Union and use absolute Intersection over Union with the better convergence effect. The experimental results on the SAR Ship Detection Dataset show that compared with the baseline YOLOX, although parameters of our method are decreased by 66.7%, its AP reaches 90.8%, which exceeds the baseline YOLOX by 0.5%, and its false detection rate is also obviously reduced, achieving state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzq778完成签到,获得积分10
刚刚
spy发布了新的文献求助10
刚刚
齐半青完成签到,获得积分10
2秒前
Sophia完成签到,获得积分10
2秒前
上杉绘梨衣完成签到,获得积分10
3秒前
3秒前
3秒前
干净问筠完成签到,获得积分10
4秒前
大模型应助雷总采纳,获得10
4秒前
美丽松鼠发布了新的文献求助10
5秒前
积极南珍完成签到,获得积分20
6秒前
丘比特应助MXX采纳,获得10
7秒前
烟花应助zzq778采纳,获得10
7秒前
iwsaml发布了新的文献求助10
7秒前
说不得大师完成签到,获得积分10
10秒前
zeng完成签到,获得积分10
11秒前
hmx应助邓谷云采纳,获得10
11秒前
11秒前
TING完成签到 ,获得积分10
13秒前
123完成签到,获得积分10
14秒前
orixero应助美丽松鼠采纳,获得10
14秒前
16秒前
16秒前
钱财实景完成签到,获得积分10
17秒前
zhao完成签到,获得积分10
17秒前
18秒前
joysa完成签到,获得积分10
18秒前
DddZS完成签到 ,获得积分10
19秒前
阔达的无剑应助wllllll采纳,获得20
19秒前
20秒前
zino完成签到,获得积分10
20秒前
long完成签到,获得积分10
21秒前
21秒前
laity完成签到,获得积分10
21秒前
zzq778发布了新的文献求助10
22秒前
大樗发布了新的文献求助10
23秒前
celia完成签到 ,获得积分10
25秒前
ziyiziyi发布了新的文献求助10
25秒前
丁逍遥完成签到 ,获得积分10
25秒前
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175