已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Lightweight Convolutional Neural Network for Ship Target Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 特征提取 卷积(计算机科学) 卷积神经网络 块(置换群论) 棱锥(几何) 特征(语言学) 计算机视觉 模式识别(心理学) 雷达成像 雷达 图像分割 分割 人工神经网络 电信 数学 语言学 哲学 几何学
作者
Yisheng Hao,Ying Zhang
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:60 (2): 1882-1898 被引量:5
标识
DOI:10.1109/taes.2023.3344396
摘要

Synthetic aperture radar (SAR), due to its merits of all-day, all-weather, and high resolution, has become an important component of radar research. Target detection is a significant basis for radar image interpretation. Aiming at the problems, such as low accuracy and high complexity of traditional convolutional neural network in SAR ship target detection, which is not conducive to the deployment of terminal equipment, we proposed a lightweight network for SAR image ship target detection based on the latest anchor-free algorithm YOLOX. First, we redesign a novel lightweight block with stronger feature fusion ability, namely, MobileNetV3S. On the basis of MobileNetV3S, we combine Cross Stage Partial Network to construct a lightweight backbone. Second, in order to improve the ability of multiscale feature extraction, we propose a new module based on dilated convolution with different dilated rates and Efficient Spatial Pyramid Network. Furthermore, we adopt convolutional block attentional module to optimize traditional YOLOX's Feature Pyramid Network, and propose a lightweight enhanced feature extraction module, which can improve the focusing ability of important targets. For detection head, the depth-separable convolution is also applied to reduce the network's parameters. Finally, in terms of loss function, we abandon the traditional Intersection over Union and use absolute Intersection over Union with the better convergence effect. The experimental results on the SAR Ship Detection Dataset show that compared with the baseline YOLOX, although parameters of our method are decreased by 66.7%, its AP reaches 90.8%, which exceeds the baseline YOLOX by 0.5%, and its false detection rate is also obviously reduced, achieving state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希捷方向发布了新的文献求助10
刚刚
顾矜应助cfv采纳,获得10
刚刚
打打应助1111111111111采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
xhz843完成签到 ,获得积分10
8秒前
爹爹发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11111发布了新的文献求助10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
Fancy应助科研通管家采纳,获得20
11秒前
华仔应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
柠檬酸发布了新的文献求助10
11秒前
12秒前
12秒前
wzx发布了新的文献求助10
14秒前
15秒前
liuz完成签到,获得积分0
15秒前
小风完成签到 ,获得积分10
16秒前
桐桐应助11111采纳,获得10
16秒前
16秒前
17秒前
深情安青应助快点喝奶茶采纳,获得10
17秒前
科研通AI2S应助GU采纳,获得10
19秒前
Youth发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770