A Lightweight Convolutional Neural Network for Ship Target Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 特征提取 卷积(计算机科学) 卷积神经网络 块(置换群论) 棱锥(几何) 特征(语言学) 计算机视觉 模式识别(心理学) 雷达成像 雷达 图像分割 分割 人工神经网络 电信 数学 语言学 哲学 几何学
作者
Yisheng Hao,Ying Zhang
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:60 (2): 1882-1898 被引量:5
标识
DOI:10.1109/taes.2023.3344396
摘要

Synthetic aperture radar (SAR), due to its merits of all-day, all-weather, and high resolution, has become an important component of radar research. Target detection is a significant basis for radar image interpretation. Aiming at the problems, such as low accuracy and high complexity of traditional convolutional neural network in SAR ship target detection, which is not conducive to the deployment of terminal equipment, we proposed a lightweight network for SAR image ship target detection based on the latest anchor-free algorithm YOLOX. First, we redesign a novel lightweight block with stronger feature fusion ability, namely, MobileNetV3S. On the basis of MobileNetV3S, we combine Cross Stage Partial Network to construct a lightweight backbone. Second, in order to improve the ability of multiscale feature extraction, we propose a new module based on dilated convolution with different dilated rates and Efficient Spatial Pyramid Network. Furthermore, we adopt convolutional block attentional module to optimize traditional YOLOX's Feature Pyramid Network, and propose a lightweight enhanced feature extraction module, which can improve the focusing ability of important targets. For detection head, the depth-separable convolution is also applied to reduce the network's parameters. Finally, in terms of loss function, we abandon the traditional Intersection over Union and use absolute Intersection over Union with the better convergence effect. The experimental results on the SAR Ship Detection Dataset show that compared with the baseline YOLOX, although parameters of our method are decreased by 66.7%, its AP reaches 90.8%, which exceeds the baseline YOLOX by 0.5%, and its false detection rate is also obviously reduced, achieving state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pokexuejiao发布了新的文献求助20
刚刚
刚刚
情怀应助kjmooo采纳,获得10
刚刚
1秒前
2秒前
归尘发布了新的文献求助10
3秒前
怕孤单的熊猫完成签到 ,获得积分10
3秒前
机灵白桃发布了新的文献求助10
3秒前
lm发布了新的文献求助10
6秒前
FashionBoy应助甜美战斗机采纳,获得10
6秒前
长安完成签到 ,获得积分10
6秒前
破心完成签到,获得积分10
6秒前
6秒前
7秒前
上官若男应助LWJ采纳,获得10
7秒前
yexing发布了新的文献求助10
7秒前
默默的彩虹完成签到,获得积分20
8秒前
10秒前
李Li完成签到 ,获得积分10
10秒前
郗妫应助米兰的老铁匠采纳,获得20
11秒前
12秒前
樊小胖发布了新的文献求助10
13秒前
13秒前
慕青应助Gyrfalcon采纳,获得10
13秒前
遇见完成签到,获得积分10
13秒前
Advocate完成签到,获得积分10
13秒前
彩色的奄完成签到,获得积分10
14秒前
宋子琛发布了新的文献求助10
14秒前
慕青应助风_feng采纳,获得10
14秒前
15秒前
李健应助荷月初六采纳,获得10
16秒前
学术虫完成签到,获得积分20
17秒前
踏实天亦发布了新的文献求助10
17秒前
CipherSage应助myy采纳,获得10
17秒前
18秒前
Owen应助小文cremen采纳,获得10
19秒前
会神完成签到,获得积分10
19秒前
亮晶晶完成签到 ,获得积分10
20秒前
感动水杯发布了新的文献求助20
20秒前
lkk发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459