A Lightweight Convolutional Neural Network for Ship Target Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 特征提取 卷积(计算机科学) 卷积神经网络 块(置换群论) 棱锥(几何) 特征(语言学) 计算机视觉 模式识别(心理学) 雷达成像 雷达 图像分割 分割 人工神经网络 电信 数学 语言学 哲学 几何学
作者
Yisheng Hao,Ying Zhang
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:60 (2): 1882-1898 被引量:5
标识
DOI:10.1109/taes.2023.3344396
摘要

Synthetic aperture radar (SAR), due to its merits of all-day, all-weather, and high resolution, has become an important component of radar research. Target detection is a significant basis for radar image interpretation. Aiming at the problems, such as low accuracy and high complexity of traditional convolutional neural network in SAR ship target detection, which is not conducive to the deployment of terminal equipment, we proposed a lightweight network for SAR image ship target detection based on the latest anchor-free algorithm YOLOX. First, we redesign a novel lightweight block with stronger feature fusion ability, namely, MobileNetV3S. On the basis of MobileNetV3S, we combine Cross Stage Partial Network to construct a lightweight backbone. Second, in order to improve the ability of multiscale feature extraction, we propose a new module based on dilated convolution with different dilated rates and Efficient Spatial Pyramid Network. Furthermore, we adopt convolutional block attentional module to optimize traditional YOLOX's Feature Pyramid Network, and propose a lightweight enhanced feature extraction module, which can improve the focusing ability of important targets. For detection head, the depth-separable convolution is also applied to reduce the network's parameters. Finally, in terms of loss function, we abandon the traditional Intersection over Union and use absolute Intersection over Union with the better convergence effect. The experimental results on the SAR Ship Detection Dataset show that compared with the baseline YOLOX, although parameters of our method are decreased by 66.7%, its AP reaches 90.8%, which exceeds the baseline YOLOX by 0.5%, and its false detection rate is also obviously reduced, achieving state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼红牛发布了新的文献求助10
刚刚
刚刚
汉堡包应助墨西哥猪肉卷采纳,获得10
刚刚
刚刚
1秒前
芙芙完成签到,获得积分10
2秒前
MarcoPolo发布了新的文献求助10
2秒前
wangR完成签到,获得积分10
3秒前
3秒前
3秒前
yyyy发布了新的文献求助10
3秒前
夜神月完成签到 ,获得积分10
3秒前
3秒前
CodeCraft应助32采纳,获得10
4秒前
4秒前
好叭发布了新的文献求助10
4秒前
zhuzhu完成签到,获得积分10
4秒前
wxx完成签到 ,获得积分10
5秒前
宽宽发布了新的文献求助10
5秒前
lulu完成签到,获得积分20
5秒前
5秒前
6秒前
英吉利25发布了新的文献求助10
6秒前
小老头儿完成签到,获得积分10
6秒前
优美的冰巧完成签到 ,获得积分10
6秒前
6秒前
忧伤的飞鸟完成签到,获得积分10
6秒前
7秒前
nb完成签到,获得积分10
7秒前
joaei完成签到 ,获得积分10
7秒前
混沌完成签到,获得积分10
7秒前
08x关闭了08x文献求助
7秒前
7秒前
7秒前
平淡的萤完成签到,获得积分10
7秒前
研友_VZG7GZ应助开朗亦绿采纳,获得10
8秒前
sun完成签到,获得积分10
8秒前
斯文败类应助tt采纳,获得10
8秒前
SunnyYim完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563