Unveiling pedestrian injury risk factors through integration of urban contexts using multimodal deep learning

行人 背景(考古学) 空间语境意识 运输工程 地理 计算机科学 人工智能 工程类 考古
作者
Jeongyeop Baek,Lisa Lim
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105168-105168
标识
DOI:10.1016/j.scs.2023.105168
摘要

This study aimed to identify contributing risk factors for pedestrian injury by integrating socio-spatial and street-level contexts through multimodal deep learning to overcome the limitations of existing studies that only consider one type of data. To investigate how the two contexts assist in describing pedestrian injury risk, six multimodal deep learning models were established by varying the ratio integrating the two contexts. The developed model with the highest performance was interpreted by using two XAI methods: SHAP for socio-spatial context and Grad-CAM for street-level context. The results indicated that the street-level context mainly contributes to the pedestrian injury risk level, assisted by the socio-spatial context, which cannot be captured at the street-level. The three main contributing risk factors were identified through model interpretation: the fragmented sky view due to the locations of high-rise buildings, the placement of crosswalks in areas adjacent to public transits, and interregional sociodemographic disparities. This study provides insight into the use of integrating two different urban contexts to identify pedestrian injury risk factors, which are expected to support improvement strategies that enhance public health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xun发布了新的文献求助10
刚刚
SierraXiao完成签到,获得积分10
刚刚
刚刚
在水一方应助苏雨康采纳,获得10
刚刚
CipherSage应助白斯特采纳,获得10
1秒前
1秒前
1秒前
光亮乌完成签到,获得积分10
1秒前
阔达碧菡发布了新的文献求助10
1秒前
CodeCraft应助MR采纳,获得10
2秒前
Kyrie完成签到 ,获得积分10
2秒前
3秒前
褚蕴发布了新的文献求助10
3秒前
科目三应助江洋大盗采纳,获得10
3秒前
牧野发布了新的文献求助10
3秒前
3秒前
Lucas应助车宇采纳,获得10
3秒前
4秒前
nono发布了新的文献求助10
5秒前
bkagyin应助无情干饭崽采纳,获得10
5秒前
假装有昵称完成签到 ,获得积分10
6秒前
6秒前
共享精神应助zzz采纳,获得10
6秒前
溜溜溜溜溜完成签到,获得积分10
6秒前
FashionBoy应助王菲采纳,获得10
6秒前
谦让的靖巧完成签到,获得积分10
7秒前
7秒前
ssc完成签到,获得积分20
8秒前
往徕完成签到,获得积分10
8秒前
9秒前
9秒前
牧野完成签到,获得积分10
9秒前
10秒前
赘婿应助wang采纳,获得10
10秒前
故酒应助奇葩萝卜采纳,获得10
10秒前
ding应助雨雨采纳,获得30
11秒前
雪山飞龙发布了新的文献求助10
11秒前
11秒前
zc发布了新的文献求助10
12秒前
jia_hui1009发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514922
求助须知:如何正确求助?哪些是违规求助? 4608502
关于积分的说明 14511663
捐赠科研通 4544566
什么是DOI,文献DOI怎么找? 2490164
邀请新用户注册赠送积分活动 1472048
关于科研通互助平台的介绍 1443840