Unveiling pedestrian injury risk factors through integration of urban contexts using multimodal deep learning

行人 背景(考古学) 空间语境意识 运输工程 地理 计算机科学 人工智能 工程类 考古
作者
Jeongyeop Baek,Lisa Lim
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105168-105168
标识
DOI:10.1016/j.scs.2023.105168
摘要

This study aimed to identify contributing risk factors for pedestrian injury by integrating socio-spatial and street-level contexts through multimodal deep learning to overcome the limitations of existing studies that only consider one type of data. To investigate how the two contexts assist in describing pedestrian injury risk, six multimodal deep learning models were established by varying the ratio integrating the two contexts. The developed model with the highest performance was interpreted by using two XAI methods: SHAP for socio-spatial context and Grad-CAM for street-level context. The results indicated that the street-level context mainly contributes to the pedestrian injury risk level, assisted by the socio-spatial context, which cannot be captured at the street-level. The three main contributing risk factors were identified through model interpretation: the fragmented sky view due to the locations of high-rise buildings, the placement of crosswalks in areas adjacent to public transits, and interregional sociodemographic disparities. This study provides insight into the use of integrating two different urban contexts to identify pedestrian injury risk factors, which are expected to support improvement strategies that enhance public health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
含羞草发布了新的文献求助10
1秒前
Shelby发布了新的文献求助30
1秒前
九月完成签到 ,获得积分10
2秒前
橙子完成签到 ,获得积分10
2秒前
4秒前
典雅的绿凝完成签到,获得积分10
4秒前
4秒前
干净的听枫完成签到,获得积分10
5秒前
赘婿应助想摆摊卖烤鱿鱼采纳,获得10
6秒前
6秒前
Annlucy完成签到 ,获得积分10
6秒前
科研通AI6应助年轻海云采纳,获得10
7秒前
xinyi完成签到,获得积分10
7秒前
8秒前
思源应助kjwu采纳,获得10
8秒前
哒哒完成签到,获得积分10
8秒前
北栀发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
11秒前
进击的PhD应助Lny采纳,获得20
11秒前
今后应助丰富的晓亦采纳,获得10
12秒前
12秒前
14秒前
桐桐应助结实的白开水采纳,获得10
14秒前
桔梗发布了新的文献求助10
15秒前
为医消得人憔悴完成签到,获得积分10
15秒前
orixero应助xyg采纳,获得10
15秒前
Denmark发布了新的文献求助10
15秒前
16秒前
沟通亿心完成签到,获得积分10
16秒前
空白娃娃完成签到,获得积分10
16秒前
mzmz发布了新的文献求助10
18秒前
18秒前
药化行者发布了新的文献求助10
18秒前
18秒前
想摆摊卖烤鱿鱼完成签到,获得积分10
19秒前
小透明发布了新的文献求助30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788