Unveiling pedestrian injury risk factors through integration of urban contexts using multimodal deep learning

行人 背景(考古学) 空间语境意识 运输工程 地理 计算机科学 人工智能 工程类 考古
作者
Jeongyeop Baek,Lisa Lim
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105168-105168
标识
DOI:10.1016/j.scs.2023.105168
摘要

This study aimed to identify contributing risk factors for pedestrian injury by integrating socio-spatial and street-level contexts through multimodal deep learning to overcome the limitations of existing studies that only consider one type of data. To investigate how the two contexts assist in describing pedestrian injury risk, six multimodal deep learning models were established by varying the ratio integrating the two contexts. The developed model with the highest performance was interpreted by using two XAI methods: SHAP for socio-spatial context and Grad-CAM for street-level context. The results indicated that the street-level context mainly contributes to the pedestrian injury risk level, assisted by the socio-spatial context, which cannot be captured at the street-level. The three main contributing risk factors were identified through model interpretation: the fragmented sky view due to the locations of high-rise buildings, the placement of crosswalks in areas adjacent to public transits, and interregional sociodemographic disparities. This study provides insight into the use of integrating two different urban contexts to identify pedestrian injury risk factors, which are expected to support improvement strategies that enhance public health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
维奈克拉应助himsn采纳,获得10
1秒前
1秒前
1秒前
ling完成签到,获得积分10
1秒前
1秒前
2秒前
自信的缘分完成签到,获得积分10
2秒前
kimchiyak应助3333r采纳,获得10
2秒前
2秒前
卢文强完成签到,获得积分10
2秒前
白开水发布了新的文献求助10
3秒前
忧虑的向日葵完成签到,获得积分10
3秒前
深情安青应助yyyl采纳,获得10
3秒前
Orange应助平常的如风采纳,获得30
3秒前
4秒前
学术纣王应助郑佳欣采纳,获得10
4秒前
shirleeyeahe发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
luoshiyi完成签到,获得积分10
5秒前
SCO完成签到,获得积分10
5秒前
5秒前
5秒前
yiyi发布了新的文献求助10
6秒前
温暖的紫真应助安静柚子采纳,获得10
6秒前
谢守峰发布了新的文献求助10
6秒前
6秒前
赵鑫宇完成签到,获得积分10
6秒前
给钱谢谢发布了新的文献求助10
6秒前
Ava应助123456qi采纳,获得10
7秒前
SR完成签到,获得积分10
7秒前
7秒前
7秒前
顾矜应助姿姿采纳,获得10
7秒前
科目三应助梅竹采纳,获得10
8秒前
曹志毅发布了新的文献求助20
8秒前
one发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853