Unveiling pedestrian injury risk factors through integration of urban contexts using multimodal deep learning

行人 背景(考古学) 空间语境意识 运输工程 地理 计算机科学 人工智能 工程类 考古
作者
Jeongyeop Baek,Lisa Lim
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:101: 105168-105168
标识
DOI:10.1016/j.scs.2023.105168
摘要

This study aimed to identify contributing risk factors for pedestrian injury by integrating socio-spatial and street-level contexts through multimodal deep learning to overcome the limitations of existing studies that only consider one type of data. To investigate how the two contexts assist in describing pedestrian injury risk, six multimodal deep learning models were established by varying the ratio integrating the two contexts. The developed model with the highest performance was interpreted by using two XAI methods: SHAP for socio-spatial context and Grad-CAM for street-level context. The results indicated that the street-level context mainly contributes to the pedestrian injury risk level, assisted by the socio-spatial context, which cannot be captured at the street-level. The three main contributing risk factors were identified through model interpretation: the fragmented sky view due to the locations of high-rise buildings, the placement of crosswalks in areas adjacent to public transits, and interregional sociodemographic disparities. This study provides insight into the use of integrating two different urban contexts to identify pedestrian injury risk factors, which are expected to support improvement strategies that enhance public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得80
刚刚
热切菩萨应助科研通管家采纳,获得30
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
我嘞个豆应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
1秒前
深情安青应助潘潘采纳,获得10
4秒前
chen完成签到,获得积分0
5秒前
星辰大海应助叶叶采纳,获得10
5秒前
zz发布了新的文献求助10
6秒前
木子李33发布了新的文献求助10
6秒前
迎海完成签到,获得积分10
6秒前
7秒前
顾矜应助Yang采纳,获得10
10秒前
打打应助水墨橙子采纳,获得10
14秒前
想流浪的鱼完成签到 ,获得积分10
15秒前
15秒前
LYB吕完成签到,获得积分10
16秒前
史小菜应助选择性哑巴采纳,获得20
19秒前
南风发布了新的文献求助50
21秒前
AYUN发布了新的文献求助10
21秒前
21秒前
倩倩发布了新的文献求助10
24秒前
Getlogger完成签到,获得积分10
25秒前
26秒前
alexyang完成签到,获得积分10
26秒前
28秒前
LYB1a吕完成签到,获得积分10
29秒前
30秒前
肖婷婷完成签到,获得积分10
31秒前
32秒前
33秒前
椰子完成签到,获得积分10
33秒前
肖婷婷发布了新的文献求助10
34秒前
领导范儿应助Lisa采纳,获得10
37秒前
单薄的誉发布了新的文献求助10
37秒前
38秒前
8R60d8应助zq吃芒果采纳,获得10
38秒前
Grace完成签到,获得积分10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382