Unveiling pedestrian injury risk factors through integration of urban contexts using multimodal deep learning

行人 背景(考古学) 空间语境意识 运输工程 地理 计算机科学 人工智能 工程类 考古
作者
Jeongyeop Baek,Lisa Lim
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:101: 105168-105168
标识
DOI:10.1016/j.scs.2023.105168
摘要

This study aimed to identify contributing risk factors for pedestrian injury by integrating socio-spatial and street-level contexts through multimodal deep learning to overcome the limitations of existing studies that only consider one type of data. To investigate how the two contexts assist in describing pedestrian injury risk, six multimodal deep learning models were established by varying the ratio integrating the two contexts. The developed model with the highest performance was interpreted by using two XAI methods: SHAP for socio-spatial context and Grad-CAM for street-level context. The results indicated that the street-level context mainly contributes to the pedestrian injury risk level, assisted by the socio-spatial context, which cannot be captured at the street-level. The three main contributing risk factors were identified through model interpretation: the fragmented sky view due to the locations of high-rise buildings, the placement of crosswalks in areas adjacent to public transits, and interregional sociodemographic disparities. This study provides insight into the use of integrating two different urban contexts to identify pedestrian injury risk factors, which are expected to support improvement strategies that enhance public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李灼洋发布了新的文献求助10
刚刚
十三应助久某采纳,获得10
刚刚
sherrycofe发布了新的文献求助10
刚刚
点击助我毕业完成签到,获得积分10
刚刚
liujin发布了新的文献求助10
刚刚
浮游应助Tumbleweed668采纳,获得10
刚刚
东方欲晓发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
廷聿完成签到,获得积分10
1秒前
AHR发布了新的文献求助10
1秒前
情怀应助小易采纳,获得10
1秒前
南汉高贵的陈皮完成签到 ,获得积分10
1秒前
十四发布了新的文献求助10
1秒前
李健的小迷弟应助心态采纳,获得10
2秒前
情怀应助wllllll采纳,获得10
2秒前
2秒前
帅气鹭洋发布了新的文献求助10
2秒前
虚惊一场完成签到,获得积分10
2秒前
浮游应助葳蕤苍生采纳,获得10
3秒前
mikefei发布了新的文献求助10
3秒前
安详念蕾完成签到,获得积分10
3秒前
4秒前
朴实天曼发布了新的文献求助10
4秒前
nico完成签到 ,获得积分10
4秒前
大耳萌图完成签到 ,获得积分10
5秒前
phj531完成签到,获得积分10
5秒前
5秒前
5秒前
汉堡包应助钢铁侠采纳,获得10
6秒前
美满平松发布了新的文献求助10
6秒前
小赵完成签到,获得积分10
6秒前
6秒前
bie123发布了新的文献求助200
7秒前
7秒前
7秒前
7秒前
啦啦啦发布了新的文献求助10
7秒前
浮游应助拟好啊采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192675
求助须知:如何正确求助?哪些是违规求助? 4375605
关于积分的说明 13625794
捐赠科研通 4230058
什么是DOI,文献DOI怎么找? 2320280
邀请新用户注册赠送积分活动 1318605
关于科研通互助平台的介绍 1268912