CAT: Center Attention Transformer With Stratified Spatial–Spectral Token for Hyperspectral Image Classification

高光谱成像 遥感 计算机科学 人工智能 上下文图像分类 图像分辨率 像素 模式识别(心理学) 计算机视觉 图像(数学) 地质学
作者
Jiaqi Feng,Qixiong Wang,Guangyun Zhang,Xiuping Jia,Jihao Yin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2024.3374954
摘要

Most hyperspectral image (HSI) classification methods rely on square patch sampling to incorporate spatial information, thereby facilitating the label prediction of the center pixel. However, square patch sampling introduces numerous heterogeneous pixels, which could distort the label prediction of center pixel. Moreover, it generates fixed training patch sample for each center pixel, hampering the performance of transformer-based models requiring a large number of training data. To address the above problems, we proposed Center Attention Transformer (CAT) with stratified spatial-spectral token generated by superpixel sampling for HSI classification. Firstly, to mitigate the inference of heterogeneous pixels, we propose Sampling From Superpixel Region mechanism to generate purer image cubes than traditional square neighborhood. Secondly, to expand the training data for transformer, we propose Multiple Stratified Random Sampling mechanism, which generates ample training samples without introducing additional labels. Finally, to more effectively extract information from the sampled patch tokens, we propose Spatial Spectral Token Generation mechanism and Center Attention Transformer structure with Gaussian Positional Embedding. This framework can extract long-range correlations of spectral information and pay more attention on the center pixel in spatial dimension. Experimental results on three HSI datasets demonstrate the performance of our proposed method CAT outperforms several state-of-the-art methods. The code of this work is available at https://github.com/fengjiaqi927/CAT-Center_Attention_Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的衬衫应助JiaqiLiu采纳,获得10
刚刚
科研通AI2S应助VDC采纳,获得10
刚刚
wwt发布了新的文献求助10
刚刚
务实大船完成签到,获得积分10
1秒前
蜗牛撵大象完成签到,获得积分10
1秒前
2秒前
sun发布了新的文献求助10
2秒前
2秒前
二二二发布了新的文献求助10
3秒前
开心的傲安完成签到,获得积分20
3秒前
麻麻完成签到,获得积分20
3秒前
DDTT完成签到,获得积分10
4秒前
霸气的念云完成签到,获得积分10
4秒前
Orange应助欢呼小蚂蚁采纳,获得10
4秒前
4秒前
SQ完成签到,获得积分10
5秒前
5秒前
飞跃海龙完成签到 ,获得积分10
5秒前
ufuon发布了新的文献求助10
6秒前
momo完成签到,获得积分10
7秒前
赘婿应助二二二采纳,获得10
7秒前
JamesPei应助HongJiang采纳,获得10
7秒前
clarkq完成签到,获得积分10
8秒前
orixero应助LIU采纳,获得10
8秒前
经法发布了新的文献求助10
8秒前
不吃橘子完成签到,获得积分10
8秒前
Cheryy完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
ding应助哈哈哈哈采纳,获得10
10秒前
Draeck发布了新的文献求助10
10秒前
kingwhitewing发布了新的文献求助10
10秒前
11秒前
clarkq发布了新的文献求助10
11秒前
11秒前
GGZ完成签到,获得积分10
11秒前
15860936613完成签到 ,获得积分10
11秒前
可爱的函函应助a方舟采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678