CAT: Center Attention Transformer With Stratified Spatial–Spectral Token for Hyperspectral Image Classification

高光谱成像 遥感 计算机科学 人工智能 上下文图像分类 图像分辨率 像素 模式识别(心理学) 计算机视觉 图像(数学) 地质学
作者
Jiaqi Feng,Qixiong Wang,Guangyun Zhang,Xiuping Jia,Jihao Yin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2024.3374954
摘要

Most hyperspectral image (HSI) classification methods rely on square patch sampling to incorporate spatial information, thereby facilitating the label prediction of the center pixel. However, square patch sampling introduces numerous heterogeneous pixels, which could distort the label prediction of center pixel. Moreover, it generates fixed training patch sample for each center pixel, hampering the performance of transformer-based models requiring a large number of training data. To address the above problems, we proposed Center Attention Transformer (CAT) with stratified spatial-spectral token generated by superpixel sampling for HSI classification. Firstly, to mitigate the inference of heterogeneous pixels, we propose Sampling From Superpixel Region mechanism to generate purer image cubes than traditional square neighborhood. Secondly, to expand the training data for transformer, we propose Multiple Stratified Random Sampling mechanism, which generates ample training samples without introducing additional labels. Finally, to more effectively extract information from the sampled patch tokens, we propose Spatial Spectral Token Generation mechanism and Center Attention Transformer structure with Gaussian Positional Embedding. This framework can extract long-range correlations of spectral information and pay more attention on the center pixel in spatial dimension. Experimental results on three HSI datasets demonstrate the performance of our proposed method CAT outperforms several state-of-the-art methods. The code of this work is available at https://github.com/fengjiaqi927/CAT-Center_Attention_Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助如意2023采纳,获得10
1秒前
华仔应助wulianlian采纳,获得10
1秒前
2秒前
Ivy完成签到,获得积分10
3秒前
3秒前
自然寒烟完成签到,获得积分10
3秒前
huangyao发布了新的文献求助10
4秒前
情怀应助Peix采纳,获得10
5秒前
5秒前
无花果应助花花金兔采纳,获得10
5秒前
suwan完成签到,获得积分10
5秒前
云凡应助yofan采纳,获得10
6秒前
7秒前
Pennyway发布了新的文献求助10
8秒前
自然寒烟发布了新的文献求助10
8秒前
雨天完成签到,获得积分10
9秒前
Owen应助qiuqiu采纳,获得10
11秒前
12秒前
15秒前
香精发布了新的文献求助10
17秒前
惊涛骇浪完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
柯一一应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
柯一一应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
yydragen应助科研通管家采纳,获得30
22秒前
Qiao应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
27秒前
27秒前
pan发布了新的文献求助10
28秒前
Yan完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495