ICGNet: An intensity-controllable generation network based on covering learning for face attribute synthesis

面子(社会学概念) 计算机科学 强度(物理) 人工智能 光学 物理 社会科学 社会学
作者
Xin Ning,He Feng,Xiaoli Dong,Weijun Li,Fayadh Alenezi,Prayag Tiwari
出处
期刊:Information Sciences [Elsevier]
卷期号:660: 120130-120130 被引量:8
标识
DOI:10.1016/j.ins.2024.120130
摘要

Face-attribute synthesis is a typical application of neural network technology. However, most current methods suffer from the problem of uncontrollable attribute intensity. In this study, we proposed a novel intensity-controllable generation network (ICGNet) based on covering learning for face attribute synthesis. Specifically, it includes an encoder module based on the principle of homology continuity between homologous samples to map different facial images onto the face feature space, which constructs sufficient and effective representation vectors by extracting the input information from different condition spaces. It then models the relationships between attribute instances and representational vectors in space to ensure accurate synthesis of the target attribute and complete preservation of the irrelevant region. Finally, the progressive changes in the facial attributes by applying different intensity constraints to the representation vectors. ICGNet achieves intensity-controllable face editing compared to other methods by extracting sufficient and effective representation features, exploring and transferring attribute relationships, and maintaining identity information. The source code is available at https://github.com/kllaodong/-ICGNet. We designed a new encoder module to map face images of different condition spaces into face feature space to obtain sufficient and effective face feature representation. Based on feature extraction, we proposed a novel Intensity-Controllable Generation Network (ICGNet), which can realize face attribute synthesis with continuous intensity control while maintaining identity and semantic information. The quantitative and qualitative results showed that the performance of ICGNet is superior to current advanced models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰鹅发布了新的文献求助10
刚刚
可颂完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
国服懒羊羊完成签到,获得积分10
2秒前
领导范儿应助ZTT采纳,获得10
2秒前
moon发布了新的文献求助10
3秒前
小宇发布了新的文献求助10
3秒前
3秒前
Neon0524完成签到 ,获得积分10
3秒前
HEIKU应助颜绫采纳,获得50
4秒前
4秒前
Jiayou Zhang完成签到,获得积分10
4秒前
高高迎蓉发布了新的文献求助10
4秒前
徐霜完成签到 ,获得积分10
5秒前
DDXXC完成签到,获得积分10
5秒前
忧郁的续完成签到,获得积分20
5秒前
陈强发布了新的文献求助30
5秒前
wzg666完成签到,获得积分10
6秒前
6秒前
爆米花应助找不到采纳,获得10
6秒前
任性的梦菲应助圈圈采纳,获得30
6秒前
7秒前
Ava应助踏实的烙采纳,获得10
7秒前
8秒前
ChangSZ应助speedness采纳,获得10
8秒前
自由基不能聚合完成签到,获得积分10
8秒前
shone发布了新的文献求助10
9秒前
烟花应助yug采纳,获得10
9秒前
科研cc发布了新的文献求助10
9秒前
你仔细听发布了新的文献求助10
9秒前
路之遥兮发布了新的文献求助10
10秒前
一平发布了新的文献求助10
10秒前
jerry完成签到,获得积分20
10秒前
搞怪便当完成签到,获得积分10
10秒前
10秒前
10秒前
布丁仔完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672