ICGNet: An intensity-controllable generation network based on covering learning for face attribute synthesis

面子(社会学概念) 计算机科学 强度(物理) 人工智能 光学 物理 社会科学 社会学
作者
Xin Ning,He Feng,Xiaoli Dong,Weijun Li,Fayadh Alenezi,Prayag Tiwari
出处
期刊:Information Sciences [Elsevier]
卷期号:660: 120130-120130 被引量:8
标识
DOI:10.1016/j.ins.2024.120130
摘要

Face-attribute synthesis is a typical application of neural network technology. However, most current methods suffer from the problem of uncontrollable attribute intensity. In this study, we proposed a novel intensity-controllable generation network (ICGNet) based on covering learning for face attribute synthesis. Specifically, it includes an encoder module based on the principle of homology continuity between homologous samples to map different facial images onto the face feature space, which constructs sufficient and effective representation vectors by extracting the input information from different condition spaces. It then models the relationships between attribute instances and representational vectors in space to ensure accurate synthesis of the target attribute and complete preservation of the irrelevant region. Finally, the progressive changes in the facial attributes by applying different intensity constraints to the representation vectors. ICGNet achieves intensity-controllable face editing compared to other methods by extracting sufficient and effective representation features, exploring and transferring attribute relationships, and maintaining identity information. The source code is available at https://github.com/kllaodong/-ICGNet. We designed a new encoder module to map face images of different condition spaces into face feature space to obtain sufficient and effective face feature representation. Based on feature extraction, we proposed a novel Intensity-Controllable Generation Network (ICGNet), which can realize face attribute synthesis with continuous intensity control while maintaining identity and semantic information. The quantitative and qualitative results showed that the performance of ICGNet is superior to current advanced models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪妙菡发布了新的文献求助10
1秒前
1秒前
2秒前
tangtang完成签到 ,获得积分10
2秒前
酷酷紫完成签到,获得积分10
2秒前
5秒前
6秒前
哈呼呼发布了新的文献求助30
7秒前
酷酷紫发布了新的文献求助10
7秒前
tzy发布了新的文献求助10
9秒前
9秒前
11秒前
不配.应助科研通管家采纳,获得20
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得20
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
不配.应助科研通管家采纳,获得20
12秒前
12秒前
12秒前
12秒前
王77应助科研通管家采纳,获得50
12秒前
罗踩踩完成签到,获得积分10
13秒前
zhouzhou完成签到,获得积分10
14秒前
jwj完成签到,获得积分10
15秒前
16秒前
舒心谷雪完成签到 ,获得积分10
17秒前
sarah发布了新的文献求助10
17秒前
17秒前
村医完成签到,获得积分10
18秒前
李健应助呵呵心情采纳,获得10
18秒前
wujiao发布了新的文献求助10
21秒前
研友_n0QYAZ发布了新的文献求助10
22秒前
wiese完成签到,获得积分20
24秒前
koi完成签到,获得积分10
24秒前
25秒前
贝壳完成签到,获得积分10
25秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323