Recent advances of carbon dot-based memristors: Mechanisms, devices, and applications

记忆电阻器 神经形态工程学 材料科学 电阻随机存取存储器 纳米技术 电子工程 计算机科学 光电子学 电气工程 人工神经网络 工程类 人工智能 电压
作者
Yanli Cao,Haotian Hao,Lin Chen,Yongzhen Yang
出处
期刊:Applied Materials Today [Elsevier]
卷期号:36: 102032-102032
标识
DOI:10.1016/j.apmt.2023.102032
摘要

Memristors are considered to hold promising applications in the fields of resistive random-access memory and synaptic bionic devices owing to their unique nonlinear electrical characteristics. Stability of performances is critical for memristors, in which functional layer materials are key. As novel functional layer materials, carbon dots (CDs) are zero-dimensional nanomaterials with a size of less than 10 nm. Owing to their distinctive features such as excellent thermal stability, high electrical conductivity, favorable dispersion and quantum effect, they can be used as functional layer materials for memristors either individually or in combination with other resistive materials to achieve satisfactory memristor regulation. This review summarizes the recent advances of CD-based memristors, including memristive mechanisms, devices, and applications. Firstly, the common memristive mechanisms of CD-based memristors are categorized as metal conductive filament mechanism, electron trapping and detrapping mechanism and oxygen vacancy conductive filament mechanism. Secondly, CDs-based memristors are classified into digital and analog types, and the effect of CDs on improving the performance of different types of memristors is further investigated. Finally, the current application fields of CD-based memristors at the present stage are reviewed, and the prospects for their development are prospected. This work is instructive for understanding the research progress of CD-based memristors and exploring the role of CDs in memristors, which brings the possibility of obtaining high-performance memristors for achieving better neuromorphic computing and data storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏伯安完成签到,获得积分10
1秒前
朴素尔岚发布了新的文献求助10
2秒前
科研通AI5应助nextconnie采纳,获得10
2秒前
务实的犀牛完成签到,获得积分10
3秒前
3秒前
Blue_Pig发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助橙子fy16_采纳,获得10
5秒前
LGJ完成签到,获得积分10
5秒前
wang完成签到,获得积分10
7秒前
8秒前
9秒前
脑洞疼应助Blue_Pig采纳,获得10
11秒前
12秒前
Akim应助危机的尔蝶采纳,获得10
13秒前
SONG发布了新的文献求助50
13秒前
明理雨筠发布了新的文献求助10
14秒前
小刘一定能读C9博完成签到 ,获得积分10
15秒前
1097完成签到 ,获得积分10
16秒前
缚大哥发布了新的文献求助10
17秒前
Rollei驳回了Hello应助
17秒前
tsntn完成签到,获得积分10
17秒前
wenbo完成签到,获得积分0
17秒前
18秒前
勤奋弋完成签到,获得积分10
21秒前
无名欧文完成签到,获得积分10
22秒前
24秒前
虚心海燕发布了新的文献求助10
24秒前
黄啊涛关注了科研通微信公众号
24秒前
24秒前
JamesPei应助Rainbow采纳,获得10
25秒前
一只科研狗完成签到,获得积分10
25秒前
pp0118完成签到 ,获得积分10
25秒前
余呀余完成签到 ,获得积分10
26秒前
27秒前
善良易文关注了科研通微信公众号
27秒前
27秒前
瑶一瑶发布了新的文献求助10
28秒前
yhy完成签到,获得积分10
28秒前
纯真雁菱完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849