A modified active learning intelligent fault diagnosis method for rolling bearings with unbalanced samples

欠采样 分类器(UML) 断层(地质) 人工智能 聚类分析 计算机科学 样品(材料) 特征向量 高斯分布 数据挖掘 模式识别(心理学) 机器学习 地质学 地震学 物理 量子力学 化学 色谱法
作者
Jiantao Lu,Wei Wu,Xin Huang,Qitao Yin,Kuangzhi Yang,Shunming Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102397-102397 被引量:12
标识
DOI:10.1016/j.aei.2024.102397
摘要

To obtain excellent classification performance for fault diagnosis, most intelligent fault diagnosis methods based on deep learning require massive labeled samples for training. However, collecting sufficient labeled fault samples is very difficult in practice due to the time-consuming and laborious work, which means the actual available dataset is the unbalanced dataset, i.e., normal data is the vast majority, while the fault samples are very small. To address this problem, a modified active learning intelligent fault diagnosis method is proposed for rolling bearings with unbalanced samples. The proposed method can adeptly employ a limited number of labeled samples to intelligently label the unlabeled samples. Therefore, the proposed method can improve classification performance while simultaneously minimizing the requisite amount of labeled samples during training. First, time and time–frequency features of vibration signals are extracted to obtain their distribution in the feature space. Second, to solve the problem of sample class unbalance, a Gaussian mixture model is constructed to obtain the distribution representation of the samples. The random undersampling method was used in Gaussian sub-model, which can extract some samples from majority classes. These extracted samples have similar distribution to the original sample set, and hence can represent the original dataset and be used to establish balanced labeled sample set. Third, an initial active learning classifier based on density peak clustering is established, utilizing the representative examples to intelligently label the unlabeled samples. To optimize the utilization of unlabeled samples, batch process method is adopted to update the initial classifier. The effectiveness of the proposed method is verified by two rolling bearings fault simulation experiments. The results show that our method can effectively improve fault diagnosis accuracy with unbalanced samples, and the updated classifier needs fewer training data to achieve comparable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sqxl发布了新的文献求助10
刚刚
贝拉发布了新的文献求助10
1秒前
zkl发布了新的文献求助10
2秒前
2秒前
2秒前
FashionBoy应助小呆鹿采纳,获得10
2秒前
4秒前
林俊超发布了新的文献求助10
4秒前
秋暝寒衣完成签到,获得积分10
4秒前
海绵宝宝的做饭铲完成签到,获得积分10
4秒前
5秒前
5秒前
瓜瓜发布了新的文献求助10
5秒前
dhd发布了新的文献求助10
6秒前
7秒前
8秒前
研友_VZG7GZ应助Sci_chen采纳,获得10
8秒前
Ava应助瘦瘦的草丛采纳,获得10
9秒前
李爱国应助skx采纳,获得10
9秒前
万嘉俊发布了新的文献求助10
9秒前
10秒前
Dryad完成签到,获得积分10
10秒前
zkl完成签到,获得积分10
10秒前
12秒前
12秒前
Lucas应助魁梧的涫采纳,获得10
13秒前
科研通AI6应助zkl采纳,获得10
15秒前
在水一方应助meww采纳,获得10
17秒前
17秒前
幸福的杨小夕完成签到,获得积分10
18秒前
瓜瓜完成签到,获得积分10
19秒前
Pupil完成签到,获得积分10
19秒前
賴博士发布了新的文献求助10
19秒前
19秒前
无限莫言完成签到,获得积分10
20秒前
Sci_chen发布了新的文献求助10
23秒前
zzz完成签到,获得积分10
24秒前
aki完成签到 ,获得积分10
24秒前
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898