A modified active learning intelligent fault diagnosis method for rolling bearings with unbalanced samples

欠采样 分类器(UML) 断层(地质) 人工智能 聚类分析 计算机科学 样品(材料) 特征向量 高斯分布 数据挖掘 模式识别(心理学) 机器学习 地质学 地震学 物理 量子力学 化学 色谱法
作者
Jiantao Lu,Wei Wu,Xin Huang,Qitao Yin,Kuangzhi Yang,Shunming Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102397-102397 被引量:12
标识
DOI:10.1016/j.aei.2024.102397
摘要

To obtain excellent classification performance for fault diagnosis, most intelligent fault diagnosis methods based on deep learning require massive labeled samples for training. However, collecting sufficient labeled fault samples is very difficult in practice due to the time-consuming and laborious work, which means the actual available dataset is the unbalanced dataset, i.e., normal data is the vast majority, while the fault samples are very small. To address this problem, a modified active learning intelligent fault diagnosis method is proposed for rolling bearings with unbalanced samples. The proposed method can adeptly employ a limited number of labeled samples to intelligently label the unlabeled samples. Therefore, the proposed method can improve classification performance while simultaneously minimizing the requisite amount of labeled samples during training. First, time and time–frequency features of vibration signals are extracted to obtain their distribution in the feature space. Second, to solve the problem of sample class unbalance, a Gaussian mixture model is constructed to obtain the distribution representation of the samples. The random undersampling method was used in Gaussian sub-model, which can extract some samples from majority classes. These extracted samples have similar distribution to the original sample set, and hence can represent the original dataset and be used to establish balanced labeled sample set. Third, an initial active learning classifier based on density peak clustering is established, utilizing the representative examples to intelligently label the unlabeled samples. To optimize the utilization of unlabeled samples, batch process method is adopted to update the initial classifier. The effectiveness of the proposed method is verified by two rolling bearings fault simulation experiments. The results show that our method can effectively improve fault diagnosis accuracy with unbalanced samples, and the updated classifier needs fewer training data to achieve comparable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suxiang完成签到,获得积分10
刚刚
天才小榴莲完成签到,获得积分10
刚刚
聪明梦松完成签到,获得积分10
1秒前
1秒前
呆萌的莲完成签到,获得积分10
1秒前
自由饼干完成签到,获得积分10
1秒前
纪外绣完成签到,获得积分10
3秒前
千桑客完成签到,获得积分10
3秒前
3秒前
菲菲完成签到,获得积分10
4秒前
李薇完成签到,获得积分10
4秒前
5秒前
耍酷的翠曼完成签到,获得积分10
6秒前
南宫清涟完成签到,获得积分10
6秒前
haomozc完成签到,获得积分10
7秒前
科目三应助冰霜采纳,获得10
7秒前
温暖宛筠完成签到,获得积分10
7秒前
霸气的雪糕完成签到 ,获得积分10
7秒前
啵啵啵完成签到 ,获得积分10
8秒前
俊逸吐司完成签到 ,获得积分10
8秒前
朵朵完成签到,获得积分10
8秒前
8秒前
benbenx完成签到,获得积分10
9秒前
qwertyuiop完成签到,获得积分10
9秒前
weber完成签到,获得积分10
9秒前
Silone完成签到,获得积分10
9秒前
华仔应助君无邪采纳,获得10
10秒前
lipeng完成签到,获得积分10
10秒前
科研通AI6应助betterme采纳,获得10
11秒前
幽默慕卉发布了新的文献求助10
11秒前
刻苦的冬易完成签到,获得积分10
11秒前
11秒前
TJTerrence完成签到,获得积分10
11秒前
LEE123完成签到,获得积分10
12秒前
12秒前
12秒前
dagongren完成签到,获得积分10
13秒前
13秒前
Endeavor完成签到,获得积分10
13秒前
suzhenyue应助harden9159采纳,获得10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337004
求助须知:如何正确求助?哪些是违规求助? 4474294
关于积分的说明 13923554
捐赠科研通 4369116
什么是DOI,文献DOI怎么找? 2400580
邀请新用户注册赠送积分活动 1393641
关于科研通互助平台的介绍 1365542