A modified active learning intelligent fault diagnosis method for rolling bearings with unbalanced samples

欠采样 分类器(UML) 断层(地质) 人工智能 聚类分析 计算机科学 样品(材料) 特征向量 高斯分布 数据挖掘 模式识别(心理学) 机器学习 地质学 地震学 物理 量子力学 化学 色谱法
作者
Jiantao Lu,Wei Wu,Xin Huang,Qitao Yin,Kuangzhi Yang,Shunming Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102397-102397 被引量:12
标识
DOI:10.1016/j.aei.2024.102397
摘要

To obtain excellent classification performance for fault diagnosis, most intelligent fault diagnosis methods based on deep learning require massive labeled samples for training. However, collecting sufficient labeled fault samples is very difficult in practice due to the time-consuming and laborious work, which means the actual available dataset is the unbalanced dataset, i.e., normal data is the vast majority, while the fault samples are very small. To address this problem, a modified active learning intelligent fault diagnosis method is proposed for rolling bearings with unbalanced samples. The proposed method can adeptly employ a limited number of labeled samples to intelligently label the unlabeled samples. Therefore, the proposed method can improve classification performance while simultaneously minimizing the requisite amount of labeled samples during training. First, time and time–frequency features of vibration signals are extracted to obtain their distribution in the feature space. Second, to solve the problem of sample class unbalance, a Gaussian mixture model is constructed to obtain the distribution representation of the samples. The random undersampling method was used in Gaussian sub-model, which can extract some samples from majority classes. These extracted samples have similar distribution to the original sample set, and hence can represent the original dataset and be used to establish balanced labeled sample set. Third, an initial active learning classifier based on density peak clustering is established, utilizing the representative examples to intelligently label the unlabeled samples. To optimize the utilization of unlabeled samples, batch process method is adopted to update the initial classifier. The effectiveness of the proposed method is verified by two rolling bearings fault simulation experiments. The results show that our method can effectively improve fault diagnosis accuracy with unbalanced samples, and the updated classifier needs fewer training data to achieve comparable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡凡完成签到,获得积分10
4秒前
Aiden完成签到 ,获得积分10
5秒前
Akim应助fishhh采纳,获得10
7秒前
无幻完成签到 ,获得积分10
10秒前
青黛完成签到 ,获得积分10
12秒前
zjzjzjzjzj完成签到 ,获得积分10
18秒前
牛黄完成签到 ,获得积分10
23秒前
HONG完成签到 ,获得积分10
24秒前
ppapp完成签到 ,获得积分10
33秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
Kkkk完成签到 ,获得积分10
36秒前
wuyyuan完成签到 ,获得积分10
36秒前
czj完成签到 ,获得积分10
38秒前
WILD完成签到 ,获得积分10
40秒前
别闹闹完成签到 ,获得积分10
42秒前
sean完成签到 ,获得积分10
54秒前
lingyu完成签到,获得积分10
55秒前
温暖的夏岚完成签到 ,获得积分10
56秒前
青雾雨完成签到,获得积分10
1分钟前
缓慢的甜瓜完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
周三完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得50
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
李思雨完成签到 ,获得积分10
1分钟前
坚定服饰完成签到 ,获得积分10
1分钟前
朴素海亦完成签到,获得积分10
1分钟前
xiaoxx91完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
科研通AI5应助jyy采纳,获得30
1分钟前
赖建琛完成签到 ,获得积分10
1分钟前
重要的炳完成签到 ,获得积分10
1分钟前
乐乐应助古炮采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901311
求助须知:如何正确求助?哪些是违规求助? 4180792
关于积分的说明 12977324
捐赠科研通 3945701
什么是DOI,文献DOI怎么找? 2164278
邀请新用户注册赠送积分活动 1182585
关于科研通互助平台的介绍 1088973