亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A modified active learning intelligent fault diagnosis method for rolling bearings with unbalanced samples

欠采样 分类器(UML) 断层(地质) 人工智能 聚类分析 计算机科学 样品(材料) 特征向量 高斯分布 数据挖掘 模式识别(心理学) 机器学习 地质学 地震学 物理 量子力学 化学 色谱法
作者
Jiantao Lu,Wei Wu,Xin Huang,Qitao Yin,Kuangzhi Yang,Shunming Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102397-102397 被引量:12
标识
DOI:10.1016/j.aei.2024.102397
摘要

To obtain excellent classification performance for fault diagnosis, most intelligent fault diagnosis methods based on deep learning require massive labeled samples for training. However, collecting sufficient labeled fault samples is very difficult in practice due to the time-consuming and laborious work, which means the actual available dataset is the unbalanced dataset, i.e., normal data is the vast majority, while the fault samples are very small. To address this problem, a modified active learning intelligent fault diagnosis method is proposed for rolling bearings with unbalanced samples. The proposed method can adeptly employ a limited number of labeled samples to intelligently label the unlabeled samples. Therefore, the proposed method can improve classification performance while simultaneously minimizing the requisite amount of labeled samples during training. First, time and time–frequency features of vibration signals are extracted to obtain their distribution in the feature space. Second, to solve the problem of sample class unbalance, a Gaussian mixture model is constructed to obtain the distribution representation of the samples. The random undersampling method was used in Gaussian sub-model, which can extract some samples from majority classes. These extracted samples have similar distribution to the original sample set, and hence can represent the original dataset and be used to establish balanced labeled sample set. Third, an initial active learning classifier based on density peak clustering is established, utilizing the representative examples to intelligently label the unlabeled samples. To optimize the utilization of unlabeled samples, batch process method is adopted to update the initial classifier. The effectiveness of the proposed method is verified by two rolling bearings fault simulation experiments. The results show that our method can effectively improve fault diagnosis accuracy with unbalanced samples, and the updated classifier needs fewer training data to achieve comparable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Gabriel发布了新的文献求助10
11秒前
斯文败类应助科研通管家采纳,获得10
13秒前
千早爱音应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
37秒前
青柠味薯片完成签到,获得积分10
42秒前
Thanks完成签到 ,获得积分10
44秒前
YAN完成签到 ,获得积分20
1分钟前
我是老大应助Gabriel采纳,获得10
1分钟前
1分钟前
欧欧发布了新的文献求助30
1分钟前
华仔应助可爱丹彤采纳,获得10
1分钟前
1分钟前
Gabriel发布了新的文献求助10
1分钟前
嘻嘻哈哈应助小路采纳,获得10
1分钟前
田様应助Gabriel采纳,获得10
1分钟前
欧欧完成签到,获得积分10
2分钟前
SciGPT应助科研通管家采纳,获得30
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
CRUSADER发布了新的文献求助10
2分钟前
CRUSADER发布了新的文献求助10
2分钟前
CRUSADER发布了新的文献求助10
3分钟前
CRUSADER完成签到,获得积分10
3分钟前
3分钟前
可爱丹彤发布了新的文献求助10
3分钟前
TXZ06完成签到,获得积分10
3分钟前
3分钟前
千早爱音应助科研通管家采纳,获得10
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
完美世界应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
Gabriel发布了新的文献求助10
4分钟前
mmmm完成签到,获得积分10
4分钟前
5分钟前
老广发布了新的文献求助10
5分钟前
5分钟前
老广发布了新的文献求助10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302615
求助须知:如何正确求助?哪些是违规求助? 4449726
关于积分的说明 13848680
捐赠科研通 4336021
什么是DOI,文献DOI怎么找? 2380724
邀请新用户注册赠送积分活动 1375671
关于科研通互助平台的介绍 1341998