A modified active learning intelligent fault diagnosis method for rolling bearings with unbalanced samples

欠采样 分类器(UML) 断层(地质) 人工智能 聚类分析 计算机科学 样品(材料) 特征向量 高斯分布 数据挖掘 模式识别(心理学) 机器学习 地质学 地震学 物理 量子力学 化学 色谱法
作者
Jiantao Lu,Wei Wu,Xin Huang,Qitao Yin,Kuangzhi Yang,Shunming Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102397-102397 被引量:12
标识
DOI:10.1016/j.aei.2024.102397
摘要

To obtain excellent classification performance for fault diagnosis, most intelligent fault diagnosis methods based on deep learning require massive labeled samples for training. However, collecting sufficient labeled fault samples is very difficult in practice due to the time-consuming and laborious work, which means the actual available dataset is the unbalanced dataset, i.e., normal data is the vast majority, while the fault samples are very small. To address this problem, a modified active learning intelligent fault diagnosis method is proposed for rolling bearings with unbalanced samples. The proposed method can adeptly employ a limited number of labeled samples to intelligently label the unlabeled samples. Therefore, the proposed method can improve classification performance while simultaneously minimizing the requisite amount of labeled samples during training. First, time and time–frequency features of vibration signals are extracted to obtain their distribution in the feature space. Second, to solve the problem of sample class unbalance, a Gaussian mixture model is constructed to obtain the distribution representation of the samples. The random undersampling method was used in Gaussian sub-model, which can extract some samples from majority classes. These extracted samples have similar distribution to the original sample set, and hence can represent the original dataset and be used to establish balanced labeled sample set. Third, an initial active learning classifier based on density peak clustering is established, utilizing the representative examples to intelligently label the unlabeled samples. To optimize the utilization of unlabeled samples, batch process method is adopted to update the initial classifier. The effectiveness of the proposed method is verified by two rolling bearings fault simulation experiments. The results show that our method can effectively improve fault diagnosis accuracy with unbalanced samples, and the updated classifier needs fewer training data to achieve comparable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助科研通管家采纳,获得20
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
风趣采白发布了新的文献求助10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
龙虾发票完成签到,获得积分10
2秒前
2秒前
2秒前
黄奥龙发布了新的文献求助10
2秒前
乐乐乐乐乐乐应助Hofmann采纳,获得10
3秒前
Komorebi完成签到,获得积分10
3秒前
xdf发布了新的文献求助10
3秒前
Owen应助狂奔的蜗牛采纳,获得20
3秒前
yilin完成签到 ,获得积分10
4秒前
锺zhishui完成签到,获得积分10
4秒前
昔年完成签到 ,获得积分10
4秒前
WSY完成签到,获得积分10
5秒前
5秒前
weijiechi完成签到,获得积分10
5秒前
咕噜咕噜完成签到,获得积分10
5秒前
6秒前
XieQinxie发布了新的文献求助10
6秒前
miaowk完成签到,获得积分10
6秒前
呆萌的绿竹完成签到,获得积分10
7秒前
daodao完成签到,获得积分10
7秒前
流川枫发布了新的文献求助10
7秒前
8秒前
黄奥龙完成签到,获得积分10
8秒前
8秒前
博士伦666完成签到 ,获得积分10
9秒前
尹山蝶完成签到,获得积分10
9秒前
大蜥蜴完成签到,获得积分10
9秒前
SYLH应助咕噜咕噜采纳,获得20
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259