A modified active learning intelligent fault diagnosis method for rolling bearings with unbalanced samples

欠采样 分类器(UML) 断层(地质) 人工智能 聚类分析 计算机科学 样品(材料) 特征向量 高斯分布 数据挖掘 模式识别(心理学) 机器学习 地质学 地震学 物理 量子力学 化学 色谱法
作者
Jiantao Lu,Wei Wu,Xin Huang,Qitao Yin,Kuangzhi Yang,Shunming Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102397-102397 被引量:12
标识
DOI:10.1016/j.aei.2024.102397
摘要

To obtain excellent classification performance for fault diagnosis, most intelligent fault diagnosis methods based on deep learning require massive labeled samples for training. However, collecting sufficient labeled fault samples is very difficult in practice due to the time-consuming and laborious work, which means the actual available dataset is the unbalanced dataset, i.e., normal data is the vast majority, while the fault samples are very small. To address this problem, a modified active learning intelligent fault diagnosis method is proposed for rolling bearings with unbalanced samples. The proposed method can adeptly employ a limited number of labeled samples to intelligently label the unlabeled samples. Therefore, the proposed method can improve classification performance while simultaneously minimizing the requisite amount of labeled samples during training. First, time and time–frequency features of vibration signals are extracted to obtain their distribution in the feature space. Second, to solve the problem of sample class unbalance, a Gaussian mixture model is constructed to obtain the distribution representation of the samples. The random undersampling method was used in Gaussian sub-model, which can extract some samples from majority classes. These extracted samples have similar distribution to the original sample set, and hence can represent the original dataset and be used to establish balanced labeled sample set. Third, an initial active learning classifier based on density peak clustering is established, utilizing the representative examples to intelligently label the unlabeled samples. To optimize the utilization of unlabeled samples, batch process method is adopted to update the initial classifier. The effectiveness of the proposed method is verified by two rolling bearings fault simulation experiments. The results show that our method can effectively improve fault diagnosis accuracy with unbalanced samples, and the updated classifier needs fewer training data to achieve comparable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xxy发布了新的文献求助30
1秒前
1秒前
Tiramisu628发布了新的文献求助10
2秒前
李健应助小娅娅采纳,获得10
2秒前
冯123发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
英勇的飞扬完成签到,获得积分10
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
Libra应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
娜娜发布了新的文献求助10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
DijiaXu应助科研通管家采纳,获得10
4秒前
Tourist应助科研通管家采纳,获得150
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得30
4秒前
田様应助飞云采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
4秒前
小面包儿应助科研通管家采纳,获得200
4秒前
4秒前
小小应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
学术小白发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874