已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A modified active learning intelligent fault diagnosis method for rolling bearings with unbalanced samples

断层(地质) 人工智能 主动学习(机器学习) 计算机科学 工程类 模式识别(心理学) 机器学习 地质学 地震学
作者
Jiantao Lu,Wei Wu,Xin Huang,Qitao Yin,Kuangzhi Yang,Shunming Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102397-102397 被引量:9
标识
DOI:10.1016/j.aei.2024.102397
摘要

To obtain excellent classification performance for fault diagnosis, most intelligent fault diagnosis methods based on deep learning require massive labeled samples for training. However, collecting sufficient labeled fault samples is very difficult in practice due to the time-consuming and laborious work, which means the actual available dataset is the unbalanced dataset, i.e., normal data is the vast majority, while the fault samples are very small. To address this problem, a modified active learning intelligent fault diagnosis method is proposed for rolling bearings with unbalanced samples. The proposed method can adeptly employ a limited number of labeled samples to intelligently label the unlabeled samples. Therefore, the proposed method can improve classification performance while simultaneously minimizing the requisite amount of labeled samples during training. First, time and time–frequency features of vibration signals are extracted to obtain their distribution in the feature space. Second, to solve the problem of sample class unbalance, a Gaussian mixture model is constructed to obtain the distribution representation of the samples. The random undersampling method was used in Gaussian sub-model, which can extract some samples from majority classes. These extracted samples have similar distribution to the original sample set, and hence can represent the original dataset and be used to establish balanced labeled sample set. Third, an initial active learning classifier based on density peak clustering is established, utilizing the representative examples to intelligently label the unlabeled samples. To optimize the utilization of unlabeled samples, batch process method is adopted to update the initial classifier. The effectiveness of the proposed method is verified by two rolling bearings fault simulation experiments. The results show that our method can effectively improve fault diagnosis accuracy with unbalanced samples, and the updated classifier needs fewer training data to achieve comparable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LjVYlL完成签到,获得积分10
1秒前
SaberLee完成签到,获得积分10
3秒前
康康完成签到 ,获得积分10
7秒前
嘉心糖发布了新的文献求助200
8秒前
奋斗的凡完成签到 ,获得积分10
9秒前
orixero应助邋遢小龙采纳,获得10
10秒前
nayogi完成签到 ,获得积分10
14秒前
foreknowledge完成签到,获得积分10
16秒前
Axs完成签到,获得积分10
16秒前
打打应助兴奋柠檬采纳,获得10
20秒前
NNN7完成签到,获得积分10
23秒前
鸭蛋完成签到 ,获得积分10
23秒前
祈雨的鲸鱼完成签到 ,获得积分20
26秒前
jasmine发布了新的文献求助10
30秒前
险胜应助yjj采纳,获得10
30秒前
ly完成签到 ,获得积分10
31秒前
CipherSage应助科研通管家采纳,获得10
32秒前
嗯哼应助科研通管家采纳,获得10
32秒前
嗯哼应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
从容芮应助科研通管家采纳,获得10
33秒前
大模型应助科研通管家采纳,获得10
33秒前
从容芮应助科研通管家采纳,获得10
33秒前
从容芮应助科研通管家采纳,获得10
33秒前
嗯哼应助科研通管家采纳,获得10
33秒前
33秒前
大模型应助shenhai采纳,获得10
37秒前
彤光赫显完成签到 ,获得积分10
41秒前
___淡完成签到 ,获得积分10
45秒前
45秒前
xy应助哈哈哈~采纳,获得10
48秒前
深情安青应助小海狸采纳,获得10
49秒前
老宇126完成签到,获得积分10
50秒前
大鸭子完成签到 ,获得积分10
53秒前
许中原完成签到,获得积分10
54秒前
Liangyong_Fu完成签到 ,获得积分10
55秒前
不与仙同完成签到 ,获得积分10
57秒前
58秒前
滴滴哒完成签到,获得积分10
58秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303141
求助须知:如何正确求助?哪些是违规求助? 2937436
关于积分的说明 8482048
捐赠科研通 2611331
什么是DOI,文献DOI怎么找? 1425790
科研通“疑难数据库(出版商)”最低求助积分说明 662434
邀请新用户注册赠送积分活动 646923