量子点
材料科学
光催化
态密度
化学物理
氢
制氢
密度泛函理论
吸收边
光化学
纳米技术
化学
光电子学
带隙
凝聚态物理
催化作用
计算化学
物理
有机化学
生物化学
作者
Mengke Cai,Xin Tong,Hongyang Zhao,Peisen Liao,Liang Pan,Guangqin Li,Zhiming M. Wang
标识
DOI:10.1016/j.apcatb.2023.123572
摘要
Understanding and manipulating intragap states in semiconductors may enable superior solar-to-hydrogen energy conversion. The effect of intragap states on photocatalysis usually remains unclear and is sometimes contradictory. Quantum-confined colloidal quantum dots (QDs) provide a unique platform to tune the density and distribution of intragap states due to their discrete energy levels. Herein, intragap active domains, composed of Cu vacancies (VCu′) and high-valent Cu (Cu⁎) defect states, are constructed in copper-deficient Zn-doped CuInS2 QDs. Note that these intragap states mainly exist at in-facet and on-edge defects in QDs, being away from the valence band maximum and close to Fermi level. Steady and transient optical spectra indicate that photoactivated Cu⁎ states serving as photoinduced absorption centers can facilitate the generation of long-lived hot electrons (ca. 85 ps) as a manifestation of phonon bottleneck. Synergistically, the VCu′ states enable the holes capture and electron-hole pairs decoupling to suppress ultrafast Auger-like hot carrier cooling (ca. 178 fs). Moreover, the on-edge defects are demonstrated to play an active role in mediating proton reduction kinetics through density functional calculation. As a result, the QDs exhibit an outstanding hydrogen generation rate of 50.4 mmol g-1 h-1 without any noble metal, meanwhile, various molecule oxidation and polymer degradation can be integrated with the hydrogen generation process.
科研通智能强力驱动
Strongly Powered by AbleSci AI