DeepProSite: Structure-aware Protein Binding Site Prediction Using ESMFold and Pretrained Language Model

计算机科学 一般化 序列(生物学) 图形 蛋白质结构预测 源代码 蛋白质结构数据库 人工智能 蛋白质结构 机器学习 数据挖掘 计算生物学 理论计算机科学 生物 程序设计语言 序列数据库 数学 数学分析 基因 生物化学
作者
Yitian Fang,Yi Jiang,Leyi Wei,Qin Ma,Zhixiang Ren,Qianmu Yuan,Dong‐Qing Wei
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (12)
标识
DOI:10.1093/bioinformatics/btad718
摘要

Identifying the functional sites of a protein, such as the binding sites of proteins, peptides, or other biological components, is crucial for understanding related biological processes and drug design. However, existing sequence-based methods have limited predictive accuracy, as they only consider sequence-adjacent contextual features and lack structural information.In this study, DeepProSite is presented as a new framework for identifying protein binding site that utilizes protein structure and sequence information. DeepProSite first generates protein structures from ESMFold and sequence representations from pretrained language models. It then uses Graph Transformer and formulates binding site predictions as graph node classifications. In predicting protein-protein/peptide binding sites, DeepProSite outperforms state-of-the-art sequence- and structure-based methods on most metrics. Moreover, DeepProSite maintains its performance when predicting unbound structures, in contrast to competing structure-based prediction methods. DeepProSite is also extended to the prediction of binding sites for nucleic acids and other ligands, verifying its generalization capability. Finally, an online server for predicting multiple types of residue is established as the implementation of the proposed DeepProSite.The datasets and source codes can be accessed at https://github.com/WeiLab-Biology/DeepProSite. The proposed DeepProSite can be accessed at https://inner.wei-group.net/DeepProSite/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stars发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
JamesPei应助孤独盼望采纳,获得10
3秒前
3秒前
4秒前
酷波er应助鲤鱼大神采纳,获得10
4秒前
Pig-prodigy完成签到,获得积分10
5秒前
kuma发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
小二郎应助等你下课采纳,获得10
6秒前
大厨懒洋洋完成签到,获得积分10
6秒前
Grondwet完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
nan发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
斯文败类应助一步一步0617采纳,获得10
9秒前
安静店员完成签到,获得积分10
9秒前
9秒前
搜集达人应助笨笨含羞草采纳,获得10
9秒前
10秒前
bailulu发布了新的文献求助10
10秒前
veggieg发布了新的文献求助10
10秒前
veggieg发布了新的文献求助10
10秒前
veggieg发布了新的文献求助10
11秒前
veggieg发布了新的文献求助10
11秒前
veggieg发布了新的文献求助30
11秒前
veggieg发布了新的文献求助10
11秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214