DeepProSite: structure-aware protein binding site prediction using ESMFold and pretrained language model

计算机科学 自然语言处理 人工智能 机器学习
作者
Yitian Fang,Yi Jiang,Leyi Wei,Qin Ma,Zhixiang Ren,Qianmu Yuan,Dong‐Qing Wei
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (12) 被引量:43
标识
DOI:10.1093/bioinformatics/btad718
摘要

Abstract Motivation Identifying the functional sites of a protein, such as the binding sites of proteins, peptides, or other biological components, is crucial for understanding related biological processes and drug design. However, existing sequence-based methods have limited predictive accuracy, as they only consider sequence-adjacent contextual features and lack structural information. Results In this study, DeepProSite is presented as a new framework for identifying protein binding site that utilizes protein structure and sequence information. DeepProSite first generates protein structures from ESMFold and sequence representations from pretrained language models. It then uses Graph Transformer and formulates binding site predictions as graph node classifications. In predicting protein–protein/peptide binding sites, DeepProSite outperforms state-of-the-art sequence- and structure-based methods on most metrics. Moreover, DeepProSite maintains its performance when predicting unbound structures, in contrast to competing structure-based prediction methods. DeepProSite is also extended to the prediction of binding sites for nucleic acids and other ligands, verifying its generalization capability. Finally, an online server for predicting multiple types of residue is established as the implementation of the proposed DeepProSite. Availability and implementation The datasets and source codes can be accessed at https://github.com/WeiLab-Biology/DeepProSite. The proposed DeepProSite can be accessed at https://inner.wei-group.net/DeepProSite/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
无花果应助dan1029采纳,获得10
刚刚
CodeCraft应助dan1029采纳,获得10
刚刚
无花果应助dan1029采纳,获得10
刚刚
科目三应助dan1029采纳,获得10
1秒前
Akim应助dan1029采纳,获得10
1秒前
1秒前
Akim应助dan1029采纳,获得10
1秒前
我是老大应助dan1029采纳,获得10
1秒前
领导范儿应助dan1029采纳,获得10
1秒前
JamesPei应助dan1029采纳,获得10
1秒前
田様应助dan1029采纳,获得10
1秒前
盼不热夏完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
左友铭完成签到 ,获得积分10
2秒前
XDR完成签到,获得积分10
2秒前
小蘑菇应助joni采纳,获得20
3秒前
3秒前
美丽热狗完成签到,获得积分10
3秒前
bujiachong发布了新的文献求助10
4秒前
4秒前
4秒前
77发布了新的文献求助10
5秒前
onceblink发布了新的文献求助10
5秒前
5秒前
6秒前
饲养员发布了新的文献求助10
6秒前
7秒前
HUHIUH完成签到,获得积分20
7秒前
哈基根向上完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
华仔应助崔灿采纳,获得10
9秒前
花盈满袖发布了新的文献求助20
9秒前
科目三应助儒雅沛蓝采纳,获得10
9秒前
9秒前
GXM发布了新的文献求助10
9秒前
细腻的仙人掌完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415771
求助须知:如何正确求助?哪些是违规求助? 4532263
关于积分的说明 14133055
捐赠科研通 4447904
什么是DOI,文献DOI怎么找? 2439987
邀请新用户注册赠送积分活动 1431956
关于科研通互助平台的介绍 1409526