Graph signal processing is combined with deep learning for detection of damaged wind turbine blades

计算机科学 人工智能 图形 模式识别(心理学) 频域 计算机视觉 理论计算机科学
作者
Xiang Pan,Chunjun Liang
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:154 (4_supplement): A79-A79
标识
DOI:10.1121/10.0022864
摘要

For early warning the damaged blade of wind turbines, an emission noise processing framework is proposed based on combination of Graph signal processing and Deep Learning. A microphone array is utilized to receive the noise emitted by the wind turbine blades. The weak abnormal signal from the damaged blade is enhanced by beamforming techniques. The enhanced signal is transformed into the graph domain by Graph Fourier Transform, from which the Mel filter bank features are extracted as inputs of a Multi-scale Feature Aggregation Conformer (MFA-Conformer) for damage detection. The MFA-Conformer combines Transformers and convolution neural networks (CNNs) to capture global and local features from the frequency or Graph domain. And the multi-stage aggregation strategy is utilized to exploit hierarchical context information. The reduction in the computational cost is achieved in the CNNs-based damage detection due to the real-valued features extracted from graph domain. The MFA-Conformer neural network is trained on the dataset which is created by applying data augmentation to the training samples. With the Mel filter bank features extracted from the frequency and graph domains, the MFA-Conformer neural network performs well in the five wind-farm data tests, with 2.55 % improvement in accuracy over the residual networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxh123发布了新的文献求助10
2秒前
科目三应助研友_8QxN1Z采纳,获得10
5秒前
领导范儿应助耍酷的香菇采纳,获得10
6秒前
ALEX应助吕小布采纳,获得10
8秒前
9秒前
BRINTYTY完成签到 ,获得积分10
12秒前
12秒前
12秒前
sgssm完成签到,获得积分20
12秒前
小孙发布了新的文献求助10
15秒前
15秒前
上官若男应助lmfffff采纳,获得10
17秒前
研友_8QxN1Z发布了新的文献求助10
17秒前
周周发布了新的文献求助10
18秒前
19秒前
九尾狐完成签到,获得积分20
19秒前
丰知然应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
wwww0wwww应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
丰知然应助科研通管家采纳,获得10
22秒前
22秒前
丰知然应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
22秒前
23秒前
ceeray23应助深水中的阳光采纳,获得10
26秒前
xiongdi521发布了新的文献求助10
28秒前
28秒前
还行吧完成签到 ,获得积分10
28秒前
脑洞疼应助ice采纳,获得10
29秒前
29秒前
周周完成签到,获得积分20
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700