已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GPONet: A Two-Stream Gated Progressive Optimization Network for Salient Object Detection

计算机科学 人工智能 突出 目标检测 模式识别(心理学) 计算机视觉 对象(语法)
作者
Yugen Yi,Ningyi Zhang,Wei Zhou,Yanjiao Shi,Gengsheng Xie,Jianzhong Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:: 110330-110330 被引量:6
标识
DOI:10.1016/j.patcog.2024.110330
摘要

The salient object detection task is to locate and detect salient regions in images, which is widely applied in various fields. In this paper, we propose a gated progressive optimization network (GPONet) for salient object detection. Firstly, to extract salient regions more accurately, we design a multi-level feature fusion module with a gating mechanism named gate fusion network (GFN). GFN focuses on the semantic information of high-level features as well as the detailed information of low-level features, enabling purposeful delivery of high-level features to low-level features. The gate fusion unit (GFU) is also able to maintain valid information and suppress redundant information in the fusion process. Secondly, while some existing methods have shown that the additional edge supervision can facilitate salient object detection, edge pixels are often much less common than non-edge pixels, leading to the challenge of class imbalance. To overcome this issue, we introduce detail labels that provide additional internal details as a supplementary supervisory signal. Combining these labels with proposed Detail Perception Loss enables our network to learn edge information of salient objects more effectively. To complement each other and guide information exchange between the two branches, we propose a cross guide module (CGM) to control the information flow transfer between them. Finally, we develop a simple and efficient attention fusion strategy to merge the prediction maps of the two branches to generate the final salient prediction map. Extensive experimental results validate that our method reaches optimal or comparable performance on several mainstream datasets. The code of GPONet is available from https://github.com/antonie-z/GPONet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Agamemnon完成签到,获得积分10
4秒前
wu发布了新的文献求助10
4秒前
甜甜甜完成签到 ,获得积分10
4秒前
看着过得去完成签到,获得积分10
5秒前
7秒前
wangermazi完成签到,获得积分0
7秒前
9秒前
搜集达人应助科研通管家采纳,获得30
13秒前
在水一方应助科研通管家采纳,获得30
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
姚慧知完成签到 ,获得积分10
14秒前
半夏发布了新的文献求助10
15秒前
领导范儿应助wu采纳,获得10
19秒前
杨小羊的羊完成签到 ,获得积分10
20秒前
心灵美的沛槐完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
22秒前
wennyzh完成签到,获得积分10
23秒前
汉堡包应助服部平次采纳,获得10
24秒前
25秒前
28秒前
居居子发布了新的文献求助10
28秒前
32秒前
美味cookies发布了新的文献求助10
33秒前
vion完成签到 ,获得积分10
34秒前
居居子完成签到,获得积分10
36秒前
如意发布了新的文献求助30
37秒前
清爽的诗云完成签到 ,获得积分10
38秒前
美味cookies完成签到,获得积分10
39秒前
41秒前
43秒前
慕青应助自行者采纳,获得10
44秒前
服部平次发布了新的文献求助10
44秒前
安然完成签到 ,获得积分10
46秒前
47秒前
wu发布了新的文献求助10
48秒前
清脆松应助司徒无剑采纳,获得20
50秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164695
求助须知:如何正确求助?哪些是违规求助? 2815790
关于积分的说明 7910147
捐赠科研通 2475331
什么是DOI,文献DOI怎么找? 1318097
科研通“疑难数据库(出版商)”最低求助积分说明 632002
版权声明 602282